LSC South East
Projections of postcompulsory education learner numbers in the South East of England.

May 2008

A report to the Learning and Skills Council (South East), for the Regional Infrastructure Group (Capital Bids)

Learning Planning \& Performance Team

Report prepared for the Learning and Skills Council by Michael Barrow, Department of Economics, University of Sussex
 Researchers: Ray Bachan, Annelle Bellony, Alvaro Monge Zegarra, University of Sussex.

For more information, please contact:
Jan Jackson
Learning and Skills Council
Price House
53 Queens Road
Brighton
BN1 3XB
Jan.jackson@lsc.gov.uk

Projections of post-compulsory education learner numbers in the South East of England.

1. Introduction

We were commissioned by the LSC (South East) in March 2008 to develop a model to project forward participation in post-compulsory education, building on some existing work within the LSC (see the Literature Review section below). The brief asked for projections of population, participation rates and learner numbers to 2020, with a system of warnings where the forecasts were thought to carry a great deal of uncertainty. The purpose of the report is to provide a framework within which to make judgements about capital bids coming forward from schools and colleges in the coming years. This is pertinent because of the recent announcement of the raising of the compulsory participation age to 17 in 2013 and to 18 in 2015. Subject to trends in the age cohort, this will increase the demand on schools and colleges for education post-16. This raising of the school-leaving age is the main factor driving our forecasts of demand for post-16 education though, as we will show, this is moderated by anticipated changes in the population age cohort.

We have constructed a spreadsheet model to calculate projections of learner numbers at the level of district and unitary local authorities, and allow different assumptions or scenarios to be tested. This report explains the workings of the model and provides forecasts on the basis of different scenarios. One is a central or baseline forecast, examining the anticipated effect of raising the compulsory participation age (where we still assume a small element of non-participation, i.e. truancy). One alternative then examines a different assumption about the growth of work-based learning and its effect upon the forecast values. This alternative is a realistic one but part of the purpose of including it is to show how the model can be used to look at different scenarios. We also (in an appendix) present a third scenario, which assumes 100\% participation everywhere and thus illustrates the (estimated) maximum possible effect of the government's policy changes.

It is important to be aware of the purpose of the model and also of its limitations. It is intended to provide a consistent framework for evaluating capital bids and therefore applies the same methodology to all districts in the South East, using the same data sources for all. It is quite possible therefore that our projections may differ from others produced by (e.g.) local councils or colleges, where different assumptions have been made and/or different data sources used. (The LSC is fully aware that in some areas of the South East, some local authorities are in discussions with central government about the reliability (or validity) of ONS data for their particular circumstances.) However, it should then be possible to explore the reasons for any differences and gain a better appreciation of likely future outcomes. For example, it is possible that several colleges in a district are all independently projecting an increase in market share and hence growth in learner numbers. However, aggregating these would result in an unattainable overall outcome, and this should be observable by comparison with forecasts given by our model.

Another limitation is the quality and consistency of the data. Where different data sources are used there is always a danger that differences in definitions, etc. will cause inconsistencies between different sets of figures. Even within a single data source there can be shortcomings; for example, the DCSF tables for participation rates report that "due to rounding error" the participation rates for Wokingham and Reading in 2005 amounted to over 100\%. Given that the figures for both 2004 and 2006 record participation rates of 91% or less, this is some rounding error. We have endeavoured to ensure the use of consistent data and methods and we do know that the results are at least internally consistent within our model, something which may not occur if projections are being made by a number of different parties.

Another point to note is that our forecasts apply to 16 and 17 year olds in the year in question. Many of the 17 year olds will reach 18 during the year and, even after the raising of the compulsory participation age, will then be entitled to leave school or college. Hence we will have some attrition of these students during their final year. We do not model this effect, on the grounds that provision would have to be made for their participation at the start of the year and this determines the required capacity of schools and colleges.

In addition to the model, we have done a range of other research into the background of post-compulsory education, which will be useful in interpreting the output of the model. For example, part of this work illustrates the flows of students across local authority boundaries (including into and out of the South East as a whole), demonstrating that it is not sufficient only to forecast the growth of resident learners. Some of this is possibly as valuable as the model itself, and it reveals that although a statistical model can produce forecasts, there is still an important element of judgement that is required when deciding upon the implications for a particular district.

The structure of our report is as follows.

- Section 2 provides a review of relevant economics literature, identifying some of the factors that have been found to influence the decision to stay on beyond the compulsory school leaving age.
- Section 3 provides a brief account of our main data sources.
- Section 4 then explores a range of contextual issues using a variety of information sources. This provides useful background material for interpreting the output of the model.
- Section 5 then explains the methodology we have used in our model and how we have used the model to generate forecasts.
- Section 6 reveals the results of our modelling exercise and, importantly, shows how these may be interpreted in the light of the contextual information reported in section 4 above.
- Section 7 provides a conclusion.
- Section 8 provides some appendices, with references and fuller versions of some of the tables in the text.

A separate Executive Briefing document provides a shorter version of this report, focussing on the contextual background, methodology and results.

2. Literature Review

There is a large body of UK empirical research that examines the factors that influence the decision to participate in post-compulsory education between the ages of 16-18. Most of these studies, often carried out by educationalists, psychologists and economists, using different data and methodologies, find some agreement on the factors that influence this decision (Appendix A1 provides the list of references to the studies reported in this section. Appendix A2 provides a summary of data and methodologies used in selected studies reviewed below). It is important to note that there is almost universal agreement in the studies reviewed here, inter alia, that educational attainment at 16, measured by either O level or GCSE grades, provide an important indicator of an individual's academic skills and aptitude for post-compulsory education and is found to be a significant determinant of participation rates. For ease of exposition we review the literature under four headings that convey the general influences on the decision to participate in post-compulsory education commonly found. These are: expected future earnings, family background characteristics, school effects, and the effect of government policy changes.

2.1 Expected Future Earnings

The theory of human capital is often used as a framework of analysis in many empirical studies (see Becker, 1993). Post-compulsory education is assumed to be an investment good and the returns to such investment, as measured by the future or lifetime discounted earnings stream associated with post-compulsory qualifications, is assumed, a priori, to be an important determinant of participation in education beyond the school leaving age. Researchers using labour market information from a variety of data sources (see Appendix A2), have constructed variables that proxy pupils' expected lifetime earnings streams. These include: the future discounted earnings associated with graduate study; the future discounted earnings associated with different occupations; and the future discounted earnings received by different ethnic groups (see, for example, Leslie and Drinkwater, 1991; Andrews and Bradley, 1997; Rice, 1999). The results from this literature support the view that a pupil's expected future earnings are significant in determining the decision to participate in post-compulsory education. Against this, studies using time series data over various periods since the 1950s, have suggested that higher levels of present and future youth and adult unemployment are associated with greater uncertainty regarding future earning streams and thereby discourage participation (see, for example, Pissarides, 1981; Whitfield and Wilson 1991; Rice, 1999; McVicar and Rice, 2001; Clark, 2002). However, Micklewright et al (1988) found no evidence of an association between participation rates and unemployment in the period 1974-78.

2.2 Family Background Characteristics

A consistent finding in cross-sectional studies is that the parental and socioeconomic background of a student has an important effect on the probability of participating in post-compulsory education. Such influences can be transmitted through parents' ability to finance, encourage, and support their children in further
education. For instance, there is evidence that children from middle class families are more likely to stay on than their lower working class counterparts. Halsey et al (1980) suggests that there are two channels of influence. First, a direct route by which professional families encourage or coerce their children to stay on. Second, there is an indirect channel by which high ability children, who tend to be middle class, have a greater propensity to stay on. Access to capital markets may also be an important influence on participation with less wealthy families being constrained in this respect. Thus socio-economic factors can indeed influence participation and these influences may also differ according to household structure and size (e.g. single parent household and the number of siblings), household income, ethnicity, parental occupation and education (post-compulsory). Researchers have also used various measures of deprivation such as local income levels, health status and the receipt of means tested benefits, as further indicators of the socioeconomic status of the household. Rice (1987), Micklewright (1989), Leslie and Drinkwater (1991), Gray et al (1993), Andrews and Bradley (1997), Dearden et al (2006) and Gorard and Smith, 2007 provide evidence on these issues. Similar evidence is found in the time series studies cited above. Foskett and Hesketh (1997) found evidence that children from working class backgrounds who stayed on opted for vocational rather than academic programmes. However, it is interesting to note that Thomas et al (2003) found that local income levels had no significant affect on participation.

2.3 School Effects

The type of school attended (private, grant maintained comprehensive, special and single sex), the size of the year 11 cohort, the quality of current school/college provision (e.g. position in school 'league tables'), and the academic reputation of the recipient institution are often cited as key influences on the decision to participate in post-compulsory education. These influences can manifest themselves in the degree of support and information that that teachers give to their pupils regarding post-compulsory education pathways or 'trajectories'. The available evidence also suggests that pupils from public/grant maintained schools and single sex schools (particularly for girls) are more likely to stay on than their counterparts without such attributes. Micklewright (1989), Cheng (1995), Andrews and Bradley (1997), Foskett and Hesketh (1997), Rice (1999) and Clark (2002), provide empirical evidence on these issues. Several studies have focused on peer group effects and find a significant influence on the desire to continue (see, Thomas and Webber 2001; Thomas et al 2003). Mangan et al (2001) found evidence that the nature of the curriculum offered by post-compulsory providers and the cost of transport to the nearest provider are significant in determining whether the student remains in the same school, or switches to a new provider.

2.4 Government Policy

Participation in post-compulsory education has increased in the UK in the post war period. The abolition of fees for state secondary education by the Education Act 1944 was a key influence on the increase in participation in post-compulsory education in the early post WWII period. Successive changes in education policy have been acknowledged as driving up participation rates in post-compulsory education and training. These policy initiatives include: the increase in the school
leaving age from 14 to 15 in 1946 and from 15 to 16 in 1972 (Micklewright, 1989); the provision of youth training schemes (Whitfield and Wilson 1991; Andrews and Bradley, 1997); the introduction of GCSEs in England and Wales in 1986 and the introduction of the national curriculum in 1988 under the Education Reform Act 1988. For instance, the introduction of the GCSEs was geared towards raising educational achievement at 16 and improving participation in post-compulsory education (Ashford et al. 1993; Gray et al. 1993). National targets for education and training were also reinforced in the Dearing Report (1996) which provided further impetus for the increase in participation in the early 2000s.

The expansion of the Higher Education sector has resulted in lower entry requirements for higher education programmes and 'role model' effects across successive cohorts have been cited as significant influences on post-compulsory staying on rates (see, for example, McVicar and Rice, 2001; Gorand and Smith, 2007). More recently the introduction of Curriculum 2000 in England and Wales, that gives students more choice and flexibility regarding their A level choice may have also contributed to the recent rise in participation.

Finally, the introduction of the educational maintenance allowance (EMA) nationally in England and Wales in 2004, for economically disadvantaged students or for students experiencing some degree of social deprivation, has had a positive impact on the participation rates of students with low socio-economic status (Dearden, 2006), but may have impacted unfavourably on other learning 'trajectories' such as youth training (Maguire and Thompson, 2006). These benefits are means tested and payable weekly, during school term only (for 2 years or 3 for people with special education needs). There is also a retention/achievement 'bonus' payable to those who are good attendees and meet agreed learning targets.

2.5 Other analyses of learner numbers in the South East

We are aware of other analyses of learner numbers that have been made by or on behalf of the LSC. Simon Winkworth for Hampshire LSC has produced a similar analysis to ours, but differing in some details (e.g. it includes 18 year olds whereas we include only 16 and 17 year olds) and not investigating such a wide range of scenarios.

Sussex LSC has also commissioned work which is complementary to ours, calculating numbers from a 'bottom up' approach. This is a model which is used by Sussex LSC and individual colleges to forecast learner numbers, by using assumptions about participation rates, progression rates, numbers of new learners and market share. The tool allows different scenarios to be modelled using historical evidence on specific patterns of participation in a local area and travel to learn patterns. It includes data from FE Colleges, schools and work based learning providers. In principle, if these were aggregated for all colleges, the answers ought to be similar to ours. The model is not in use by all colleges so cannot at this stage be used as a consistency check across all colleges in the region.

3. Data sources

We use four main sources of data in our research, which we briefly describe here. Other sources are noted in the text, as appropriate. The four sources are:

1. Population figures and projections. We use the ONS sub-national population projections (SNPP) as our baseline data. See http://www.statistics.gov.uk/statbase/Product.asp?vInk=997 for details of these data. This provides a consistent set of data across the South East although it may not take account of developments contained in local plans, etc. We discuss the implications of these omissions in section 4.2. These data are available at county, unitary authority and district level, annually through to 2020 and beyond. Only broad age groups are given, the relevant one for our purposes being the 15-19 age group. We have relied on LSC calculations of the breakdown of this broad age group into individual year cohorts, in particular, 16 and 17 year olds.
2. Participation rates. Again we rely on official figures, specifically those published by the Department for Children, Schools and Families in their Statistical First Release series. These give participation rates (by different types of provider: schools, colleges, etc) by local education authority (LEA, i.e. the counties and unitary authorities) for the years up to 2006, which we take as our base year. Participation rates are not provided at district level.
3. The Individual Learning Record (ILR). We use this data source to obtain data about the numbers of learners (in colleges) within each district and hence to estimate district level participation rates. As the database contains both the district of the learner and of the education provider, we can also use this source to examine movement across district borders, where a student resident in one district attends school in another.
4. The Pupil Level Annual School Census (PLASC) serves a similar role as the $I L R$, but for schools. Again, we can estimate participation rates and crossborder flows.

In most of our analyses we focus attention on the 16 and 17 year old age groups though in places we include 18 year olds where this is relevant or unavoidable. Supplementary data sources are described when encountered.

4. Contextual information relevant to the forecasts

4.1 Population

The population projections from the ONS suggest that overall there will be a modest reduction in the population between now and 2013, continuing to decline thereafter to 2020. The trend for 16 and 17 year olds is shown in Figure 1:

Figure 1: Trend in the 16 and 17 year old population in South East England (000s).

Source: ONS and LSC

Thus it can be seen that 2008 is expected be a peak in terms of population for this age group with a more or less continuous decline through to 2020. The population declines by 4.7% between 2006 (our baseline year) and 2013 when it is expected that the school leaving age will be raised to 17. By 2015, the population will have declined by 6.1% and by 2020 the decline is 7.7%.

Thus even if the participation rate rises substantially, the increase in student numbers may be modest. For example, supposing that the 16 year old participation rate rises from 86% in 2006 to 98% in 2013 , the number of students should rise by only 98 _ $(1-0.047)-86 _1=7.4 \%$. If the 98% participation rate holds true through to $2 \mathbf{0} 20$, the number of 16 year olds in the system will only be 6.0% above the level in 2006. Individual authorities will, of course, vary around this average.

The dispersion of population trends by counties is shown in Figure 2 below, where it is evident that the trends are similar across all the counties of the SE but differ from the experience of unitary authorities.

Figure 2: Trends in 16 and 17 year old population in SE Counties (000s).

Up until the year 2013, the population of 16 and 17 year olds in counties declines gently by an average of 3.5%, the range being from West Sussex, with a roughly constant population, to Oxfordshire, with an expected fall of 6.1%. From there through to 2020 the population is expected to decline with all being below their 2006 level of population. Concentrating on the change in population suggests a greater degree of disparity than suggested by the graph, which focuses on the levels of population, and hence all counties tend to look similar.

Figure 3: Trends in 16 and 17 year old population in SE unitary authorities (000s).

For the unitary authorities (Figure 3) we see a different picture, with consistent falls in population. By 2013 the population (16-17) of the unitaries is expected to drop by 8.1% on average, with falls as large as 16.6% in Reading and 13.8% in

Portsmouth. Subsequently, the fall is generally more modest, of the order of an additional 3\% points on average.

On the basis of this evidence therefore, we would expect growth in student numbers to occur more outside the unitary authorities.

Once we look at the district level we might expect greater divergences (by the law of large numbers), and this is true to some extent. Line charts such as those above cannot adequately show the large number of district authorities, so we present the population growth rates for districts in the form of bar charts. Figure 4 below shows the histograms of the growth rates for 2013 and 2020 (both relative to 2006).

Figure 4: Trends in 16 and 17 year old population in SE districts and unitary authorities.
(a) to 2013

(b) to 2020

In Figure 5 below we show a map of the South East district and unitary authorities ${ }^{1}$, coloured according to the absolute growth in population of 16 and 17 year olds over the period 2006 to 2013. The map reveals that there are a few more authorities with decreases (38) than with increases (25).

[^0]Figure 5: Growth in numbers of 16 and 17 year olds, 2006-2013

Table 1 below lists the authorities with the highest absolute growths of population.
Table 1: Authorities with the largest predicted increase in the 16 and 17 year old population, 2006-2013

Authority	2006	Growth	$\%$ growth
Ashford	2843	266	9%
Chichester	2365	136	6%
Elmbridge	3033	156	5%
Horsham	3331	128	4%
Basingstoke and			
Deane	3810	103	3%
Isle of Wight	3494	92	3%
Thanet	3461	86	2%
Rother	2070	48	2%
Dartford	2360	54	2%
Runnymede	1656	33	2%
Chiltern	2373	29	1%
South Bucks	1618	11	1%
Arun	3408	-5	0%
Eastbourne	2296	-6	0%
Surrey Heath	2079	-8	0%

The full table is given in Appendix 3 as Table A3.1.
As well as individual authorities, it is useful to look at broader areas of increase since, as we discuss later, there is much travelling across boundaries to go to school or college. For example, Ashford and Rother are neighbouring authorities which appear in the above table, as do Chiltern and South Buckinghamshire. It should be noted however, that the absolute sizes of the increases are not very large in most cases, only five districts have numbers increasing by more than 100.

In addition, we note that some of these areas are ones identified by SEEDA in its regional plan as 'growth diamonds'. Although this does not necessarily imply increased population but rather areas with potential for investment and economic growth, this may in turn draw in people from other areas. Relevant to the above list in this context are the growth diamonds in Basingstoke, and Gatwick/Crawley. We say more about the growth diamonds and related issues later on.

It is also interesting to note that many of the areas on (but within) the South East border, have quite low predicted increases in population, particularly around London. Only Dartford, Elmbridge and South Bucks are listed in Table 1 above. Authorities on the border are often recipients of students from outside the South East and can therefore face additional pressures, especially on the borders of London. We analyse cross-border movements in a later section.

4.2 Other sources of information regarding population projections

The ONS figures for population are trends which may not reflect all the information available at a more local level, such as planned new towns or housing developments, etc. (The ONS figures do take account of population migration both internationally and internally, though it is recognised that there can be a great deal of uncertainty about some of these data.) We have therefore researched local authority web sites, the South East Plan, SEEDA's Regional Economic Strategy and other possible sources of information to supplement the ONS projections.

From the South East plan

(http://www.seeda.co.uk/Publications/Developments_\&_Infrastructure/docs/
RegionalHousingStrategy2006.pdf we have obtained data on the planned average annual growth in the housing stock. Multiplying this by 11 we get the growth up to 2015 (from our base year of 2004 for which we have the housing stock). We can therefore calculate the expected growth rate of the housing stock, with which we can compare to our growth rate of population. Where the former is significantly greater than the latter, we might have cause to doubt the ONS population projections.

Table 2 shows the authorities which have the largest anticipated growth of the housing stock and compares this to their projected population growth figures. (The full table is given in Appendix 3, Table A3.2.)
than those projected by ONS. The figures for Milton Keynes and Aylesbury Vale are also consistent with information in SEEDA's Regional Economic Strategy 20062016, which suggests additional housing of 70,000 by 2031 (MK) and 18,300 by 2021 (AV). We will make use of the information in this table as a form of 'traffic light' warning when interpreting the results from our modelling, which only uses the ONS projections.

The above information relates to the population (particularly 16-17 year olds) rather than the number of learners. Hence we also need to examine the participation rate and how this is expected to unfold in the future. We therefore now turn our attention to a review of participation rates.

4.3 Participation rates

The main policy driver of likely future changes in post-16 participation rates is legislation, with the government recently (May 2008) announcing an increase in the legal school-leaving age, to 17 in 2013 and 18 in 2015. These proposals therefore form the centrepiece of our forecast and these are the main drivers of changes in participation rates. First however, we look at some of the evidence regarding trends in participation rates in the recent past.

From a rate of around 10% in 1950, post-compulsory participation increased steadily until reaching a rate of around 85% by 2006^{2}. The experience since 1985 is shown in Figure 6 below.

Figure 6: Participation rate (1985-2006) in education and training of 16 and 17 year olds in England

The main features are the steady growth from 1985 to 1995, but a level performance since then. Clark suggests that rising unemployment prior to 1993

[^1]could explain part of the growth, with falling unemployment after 1993 offsetting the positive effects on participation of increasing examination success (at GCSE level). The perception of generally increasing economic returns to education is also likely to encourage participation (see our literature review above) and it is perhaps surprising that the participation rate has stagnated.

To obtain a more nuanced picture of the recent trends in participation we examine briefly the data at education authority level across the whole of England. For this we use data from the DCSF/DIUS website
(http://www.dfes.gov.uk/rsgateway/DB/SFR/s000734/index.shtml). We will look at the full-time, part-time and WBL participation rates but we start off with the total participation rate, aggregating all three of these categories. We examine the data from 1998 to 2005 (for which the data are complete and consistent).

4.4 The total participation rate

We begin by looking at 16 year old students. The overall participation rate rises only slightly, from 83.5% to 86.0%, over the seven years. The distribution across authorities tells an interesting and not unexpected story: the distribution is squeezed from below as the poorer performers catch up and, of course, the rate is limited above by 100%.

Figure 7: Distribution of growth rates of participation by 16 year olds, English education authorities, 1998 and 2005
(a) 1998

An alternative way of looking at the same data is via a multiple box plot. From left to right (1998 to 2005) we observe a fluctuating average participation rate but with a steadily declining spread (Figure 8 below). (Note: The central box of the box plot shows the central 50% of the data, i.e. between the first and third quartiles. For 1998 this can be seen as lying between 79 and 88, approximately. The horizontal line within the box represents the median - the value at the centre of the distribution. This would be the local authority in the middle of the distribution of participation rates. The 'whiskers' extending above and below the box contain all 'reasonable' values and beyond the whiskers lie the extreme values or outliers, represented by dots. The height of each whisker is, by convention, 1.5 times the height of the box.)

Figure 8: Box plots of 16 year old total participation rate, 1998-2005

We can perform the same analysis for 17 year olds, capturing the relevant features of the data in similar box plots:

Figure 9: Box plots of 17 year old total participation rate, 1998-2005

We observe a similar pattern, though the average participation rate is lower: 75.8\% in 1998 and 76.2% in 2005. It is interesting that, for both ages, the distributions are fairly symmetric (the horizontal bar representing the median is roughly in the middle of the box). One might have expected many authorities clustered at a high level, then a longer tail of lower achieving authorities, but this does not appear to be the case.

We can look in the same way at the individual components of the overall figure.

4.5 Full time participation rates

Figures 10 and 11: Box plots of 16 and 17 year old full time participation rate, 1998-2005

There is a more clearly discernable upward trend to the full time figures and there is a consistent difference of around 12% points between the figures for 16 year olds and 17 year olds. Since the total participation rate drops by $8-10 \%$ between 17 and 16 year olds, it follows that much of the decline in full-time participation results in non-participation rather than a switch to part-time or WBL.

4.6 Part-time participation rates

Similar box plots are drawn below to illustrate the trends in part-time participation rates.

Figure 12 and 13: Box plots of 16 and 17 year old part-time participation rate, 1998-2005

Here we can observe the small shift out of full-time into part-time education at age 17, where the part-time participation rate is 1.5% to 2% points higher than the rate at 16. The trend over time is clearly downwards which is partly due to the disappearance of very high rates (over 20\%) in some areas in the late 90s. (Kingston upon Thames and Sutton are the only such areas in the south east region.)

4.7 Work-based learning

These graphs demonstrate a similar pattern to part-time learning, with a decline over time and a small jump up from the rate at 16 to that at 17 . The jump is again of the order of 2% points. WBL is slightly more popular than other forms of parttime learning, though the orders of magnitude are fairly similar. It may be reasonable to consider these two categories together for some purposes, as there is likely to be considerable variation within each category (e.g. in terms on numbers of hours in education).

Figures 14 and 15: Box plots of 16 and 17 year old WBL participation rate, 19982005

4.8 Summary of findings for population and participation trends

For the purposes of our modelling exercises we have learned the following stylised facts, which will inform the assumptions we make for the future regarding participation rates:

- The overall participation rate has not changed much over the recent past
- There has been an increase in full-time participation and a fall in parttime participation, the latter due largely to falls from high levels in some authorities.
- There is a fall in participation between 16 and 17 , a small part of which is a switch from full-time to part-time education.

Combining these findings with the falling size of the 16-18 cohort over time, it suggests that without a change in external factors we would not expect the numbers of students participating post-16 to increase. Increases in numbers must come from increases in participation driven by exogenous events, such as changes in legislation (the school-leaving age) or the curriculum (the new diplomas), etc. The legislation regarding the school leaving clearly dominates other events so this is the focus of our forecast.

4.9 Travel to learn patterns

The participation rates we will calculate from our model are on the basis of residence, but these figures do not indicate where students actually attend school or college as there may be substantial cross-border movement. We can gain insight into such movements by analysis of the ILR (college) and PLASC (school) databases, using data for 2006-7. These contain, for each student, both the local authority of the residence and the local authority of the education provider. We can therefore work out how many students each authority is 'exporting' and 'importing' as well as the numbers attending school or college within their own local authority. Not only can we observe cross-border transfers within the South East, we can also observe transfers across the South East boundary with the rest of the country. Large numbers of students crossing district boundaries imply a need to be more careful about translating any increases in participation by residents into a need for additional supply within the same authority, especially as this pattern of transfers may change over time.

Transfers across the South East boundary

First we look at the transfers into and out of the South East as a whole. The numbers of transfers can be seen in Table 3 below.

Table 3: Numbers of students crossing the South East border - 16 and 17 year olds

	Number of learners resident in the SE	Exports	Imports	Net imports	Number taught in SE	Net imports as \% of learners
Full-time school	56,772	46	3,196	3,150	59,922	6\%
Full-time college	74,392	2,119	7,560	5,441	79,833	7\%
Part-time	22,015	3,033	2,294	-739	21,276	-3\%
Total	153,179	5,198	13,050	7,852	161,031	5\%

We see that the SE region is a net importer of full-time students, to the order of 6.5%. This adds a total of about 8,600 full time students to the total taught, with slightly more than half of these in college rather than in secondary school. For parttime education, there is modest export of about 3% of the students. Not surprisingly, colleges engage in more trade than schools.

The authorities which are the biggest importers across the SE boundary are shown in Table 4 below.

Table 4: Numbers of students imported from outside the South East - 16 and 17 year olds (authorities with 5\% or more imports)

LA	Population,$16 \text { \& } 17 \text { yo }$	Schools Imports	ILR imports - full time Imports	ILRimports- parttimeImports	Total full time Imports	Total - all	
						Imports	\% of population
Epsom and Ewell	1863	340	679	203	1019	1222	66\%
Dartford	2360	438	729	150	1167	1317	56\%
Elmbridge	3033	75	1077	85	1152	1237	41\%
New Forest Reigate and	4196	180	1066	172	1246	1418	34\%
Banstead	3165	78	662	113	740	853	27\%
Tandridge	2362	549	8	0	557	557	24\%
Slough	3165	241	269	139	510	649	21\%
Chiltern	2373	198	138	37	336	373	16\%
Chichester West	2365	0	237	111	237	348	15\%
Oxfordshire	2628	56	321	3	377	380	14\%
Runnymede	1656	1	174	14	175	189	11\%
Spelthorne	2115	75	122	22	197	219	10\%
Gravesham	2750	19	118	101	137	238	9\%
Hastings	2361	6	17	179	23	202	9\%
Guildford	3493	10	130	157	140	297	9\%
Swale	3605	53	225	2	278	280	8\%
Thanet Milton	3461	16	224	7	240	247	7\%
Keynes	6096	72	243	79	315	394	6\%
Cherwell	3587	20	131	37	151	188	5\%
Tunbridge Wells							
Wells Tonbridge	3102	141	4	11	145	156	5\%
and Malling	3362	50	49	70	99	169	5\%
Aylesbury Vale	4867	103	62	45	165	210	4\%

Figure 16 illustrates these figures on a map of the South East, for schools and colleges separately. Note that the map illustrates the actual number of students imported, not imports as a percentage of the resident population.

Figure 16: Students (16 and 17) received from outside the South East
School students received from outside SE
(a) Schools (all full time)

Schoolstudents received from outside SE

(b) Colleges (full time and part time)

College students received from outside SE

Imports into schools are heaviest on the northern borders of the SE, especially around south west London. The college map shows a more even geographical distribution, with fewer transfers into the SE amongst some of the boroughs bordering London. Boroughs which are not on the boundary generally do not receive large numbers of students from outside the SE (one exception is Chichester, where large numbers from outside the SE attend Chichester College).

In contrast, exports (which are almost exclusively from colleges, not schools) are more evenly spread and no authority exports more than 7\% of 16-17 year olds outside the SE, apart from Spelthorne (12\%). Figure 17 below shows the map of exports (again, this is numbers of students).

Figure 17: South East students (16 and 17 full time and part time) taught outside the region

SE students taught outside SE

Once again we see, not surprisingly, most exports from the border authorities. (Note that exports are smaller than imports - the dark blue areas imply exports of between 94 and 451 students, whereas for college imports the dark blue areas represent 168 to 1238.) The authorities with the largest exports are as follows (remember these are all from colleges, not schools):

Table 5: Exports of 16-17 year old pupils to outside the South East

	Full				
Population	Part time	All time exports	$\%$ of population		
Milton Keynes	6096	209	242	451	7%
Portsmouth	4726	185	120	305	6%
Spelthorne	2115	194	68	262	12%
New Forest	4196	129	106	235	6%
Cherwell	3587	105	66	171	5%
Slough	3165	103	67	170	5%
Vale of White					
Horse	3468	110	49	159	5%
Aylesbury Vale	4867	71	74	145	3%
Havant	3244	89	51	140	4%

Southampton	5035	9	121	130	3%
Elmbridge	3033	91	33	124	4%
Dartford	2360	41	75	116	5%
Sevenoaks	2984	62	52	114	4%
Epsom and Ewell	1863	63	39	102	5%

We conclude that imports are a more important feature than exports when forecasting student numbers; not only are imports larger, they are also more concentrated in a few authorities. It is also noticeable that, unsurprisingly, it is the colleges which have higher proportions of students from outside the SE.

These transfers do not have large implications for our forecasts if the patterns of transfer remain constant, e.g. if the growth of population and participation rates of authorities outside the South East are similar to those inside. However, if these rates diverged or, for instance, if one of those authorities outside the South East were to build a new college, then we might see a change in the patterns of transfer.

Transfers within the South East

We now turn to patterns of movement within the South East. Table 6 shows the authorities who are most affected by trade across their borders, either importing or exporting within the SE authorities (not across the SE border).

Table 6: Numbers of students moving between local authorities - 16 and 17 year olds (extremes of the distribution)

	Schools		Colleges							Total	
LA	Resident learners	Net imports	Resident learners	Net imports	net imports	$\%$ learners	Number taught				
Rushmoor	113	-113	1610	2697	2584	150%	4307				
Elmbridge	422	253	1190	1885	2138	133%	3750				
Havant	144	31	2327	2805	2836	115%	5307				
Dartford	738	603	783	959	1562	103%	3083				
Chichester	654	159	1249	1759	1918	101%	3821				
Epsom and Ewell	621	330	507	794	1124	100%	2252				
Canterbury	1515	220	1056	1691	1911	74%	4482				
Guildford	895	257	1219	1263	1520	72%	3634				
Winchester	18	-18	2313	1689	1671	72%	4002				
Tonbridge and Malling	1435	221	850	960	1181	52%	3466				
Eastbourne	20	-20	1536	819	799	51%	2355				
Chiltern	1387	508	468	424	932	50%	2787				
	\vdots										
Portsmouth	27	-27	3325	-1777	-1804	-54%	1548				
Spelthorne	183	28	1366	-897	-869	-56%	680				
Adur	378	-82	720	-561	-643	-59%	455				
Surrey Heath	648	-39	986	-962	-1001	-61%	633				
Arun	1010	-116	1635	-1594	-1710	-65%	935				
Test Valley	8	-7	2272	-1533	-1540	-68%	740				
Sevenoaks	1190	-885	693	-688	-1573	-84%	310				
Hart	228	17	1552	-1541	-1524	-86%	256				

Thus Rushmoor, proportionately the largest importer, has 1723 resident learners, most in colleges somewhere. There are also net imports of 2584 (the balance of those residents educated outside Rushmoor and non-residents educated within the borough), which amount to 150% of the resident learners, making the number taught much larger than the number of resident learners. In contrast, Hart exports most of its learners, i.e. most go to college outside the borough. The full table is given in Appendix 3, table A3.6(a) and A3.6(b).

It might be thought that the percentage exported would be inversely proportional to the number of resident 16-17 year olds, on the grounds that 'small' authorities are less able to provide sufficient educational opportunities within their boundaries. However, this is not the case as there appears to be no relationship between the variables (correlation coefficient $=0.018$).

The average value of trade (i.e. the average value of net imports, ignoring the minus signs) is 17% and gives the number of students crossing the LA boundary (in either direction), as a proportion of the resident population. This figure is larger if we compare it to the proportion of 16-17 year olds in full-time education $(61 \%$ on average). Thus in the typical authority, about 28% of full time learners are crossing LA boundaries.

In terms of the need to supply education, it matters little if the imports to an authority are from another authority inside or outside the SE. Hence Figure 18 shows the figures in terms of numbers of imports from whatever district, with the darker blue areas indicating a higher level of net imports. This shows a variegated pattern, with less of a 'SE border effect'.

Figure 18: Net imports of students by local authorities
Net imports between LAs

4.10 Implications of travel to learn patterns for forecasting

The overall evidence suggests that calculating population growth rates and participation rates for district level authorities is only part of the information required. We also need to take account of travel patterns, as illustrated in Figure 18 above. The interpretation could be ambiguous however. If we observe a projected increase in learners in a district that typically exports many of its learners, we could either conclude that the increase will likely be met by provision outside the borough, or that there is an additional argument for provision within the borough itself. This is, of course, a policy judgement. For authorities with large imports, the number taught will be larger than the resident population, possibly significantly so. Hence a large percentage increase relative to resident learners might not be so large when compared to numbers taught.

5. Modelling

Having written in some detail about the context of future participation rates we now move on to describe how we have modelled future events and then present our results. First we briefly describe the data used.

5.1 Population data

As described earlier, we rely upon ONS sub-national population projections. As far as data availability goes, published figures give population from the present up to 2020, at the level of the district, by broad age bands (15-19 is the relevant age band in this case). From this we need to extract estimates of the numbers aged 16,17 and 18. Unpublished ONS figures giving this breakdown were provided by the LSC and we use these estimates without further adjustment. It is worth noting that the ONS census date is in January whereas the census date for participation data is August $31^{\text {st }}$. However, this is likely to impart only a small bias to the numbers and, in any case, would cancel out when calculating growth figures.

5. 2 Participation rates data

We described earlier that we use data from DCSF on participation rates, which are only available at county/UA level, not district level. Hence part of our modelling procedure is to disaggregate this to district level.

Future numbers of learners are by definition equal to the relevant population multiplied by the participation rate. Since we have population projections, our task is to forecast the participation rates.

5. 3 Forecasting participation rates

For participation rates, we have data for 2006 and earlier at the level of counties and unitary authorities, but not for the districts. We therefore need to (a) find a way of estimating 2006 participation rates for districts and (b) projecting forward the participation rates.

Our methodology to calculate future participation rates is as follows:

1. Estimate participation rates for districts in 2006, varying around the relevant county averages.
2. Disaggregate those participation rates into full time school, full time college, part time, work-based learning and the independent sector.
3. Estimate the overall participation rates for 2013/2015 for each district
4. Estimate the overall participation rate for intervening years
5. Project forward the component parts (full-time, etc) of the overall participation rate, consistent with the overall rate in each year.
6. Project forward beyond 2013/2015.

At various stages of the calculations we need to ensure consistency, e.g. that the participation rates estimated for districts in 2006 are consistent with the published overall participation rates for the counties, or that the projections for full-time, parttime, etc. participation rates add up to the overall rate in each year of the forecast. In effect, this means that one category must always be a residual, i.e. the amount needed to be consistent with the total for all categories. This implies that any errors in estimating one category will have corresponding off-setting errors in another. A further implication is that we can generally have greater confidence in the estimate of a total than in the estimate for a component category. This should be borne in mind when interpreting the results of the model. We now explain in more detail each stage of the forecasting procedure.

1. Estimating district participation rates in the South East in 2006

After some experimentation with different methods we decided the best approach is to use information from the ILR and PLASC databases. Using these, we obtain a count of the numbers of full time and part time learners (in both schools and colleges) in each district. Dividing these by our population estimates gives an estimate of the district participation rate. Our method can be verified by the fact that it gives estimates for counties and unitary authorities which are close to those reported by the DCSF. We can therefore have some confidence that the method provides reasonably accurate estimates at the district level also.

Hence the participation rate for a district can be calculated as

$$
p_{\text {district }}^{2006}=p_{\text {county }}^{2006} \times\left(\frac{p_{\text {district }}}{p_{\text {county }}}\right)_{\text {PLASC }}
$$

This is probably best explained by example. To calculate Aylesbury Vale's participation rate, we first take the published rate for Buckinghamshire ($p_{\text {county }}^{2006}=$ 0.720). We then look at the PLASC and ILR data which suggest the district participation rate for Aylesbury Vale is 0.635 and the county rate is 0.692 . Note that there is a slight discrepancy between the DCSF figure and the PLASC figure for the county. The PLASC/ILR data suggest that Aylesbury Vale's figure is about 92% of the county figure $(0.635 / 0.692)$. We therefore estimate the district participation rate as $0.72 \times \frac{0.635}{0.692}=0.660$ or 66%. This gives us a figure which is consistent with the published DCSF figure for the county. (This example is for 16 year olds in full time education.)

Note that, if the DSCF and PLASC/ILR data give the same county participation rate, the estimated participation rate we use is precisely the PLASC/ILR figure. We only make adjustments because there are discrepancies between the two sources, and these are generally quite minor.

Applying this method to all districts in turn, we can estimate the overall district participation rates. Note that, although the PLASC.ILR data covers full time and part time learners, it does not include the independent sector, which is included in the DCSF figure. We assume the full time rates as calculated from PLASC/ILR are the
best measure for estimating the overall participation rate, although there will be a small degree of inaccuracy using this method.

2. Disaggregating the overall participation rate for 2006

For full time students either in school or college, we calculate the participation rate in a similar manner to step 1 above. We know the full time school participation rate for Buckinghamshire from the DCSF data. Using the PLASC or ILR data we know that the district rate for Aylesbury Vale differs from the county average by a certain amount. We can therefore work out the district participation rate, consistent with the DCSF county figure.

For part time students we apply the same method, except that we use part time participation rates in the ILR data (there are virtually no part-time students in the PLASC data).

For work-based learning we assume the patterns of WBL are similar to patterns of part time learning. We use the same methodology as for full time and part time, except that we have to use ILR data from part time data to generate the district participation rates consistent with (and varying around) the county WBL participation rate reported by DCSF.

There only remains the independent sector, about which we have very little information. We therefore calculate the independent school participation rate as a residual. It is calculated as:

Independent rate $=$ overall rate - full time rate - part-time rate - WBL rate
Since it is calculated as a residual, any errors in the calculation of the other participation rates will affect the independent rate. Since the full time rate in particular is much larger than the independent sector rate, a small error in the former could result in a relatively large error in the latter. For example:

	True rate	Estimated rate
Full time rate	65	63
Part time	5	5
WBL	5	5
Independent	10	12

The underestimate of the full time rate is just $3 \%(=63 / 65-1)$ but the resulting overestimate of the independent rate is $20 \%(=12 / 10-1)$. However, the independent sector is not the central focus of this study, so we are not so concerned about errors (which are probably quite small in absolute value) in this sector.

We comment more generally on some of the approximations in our data at the end of this section.

3. Estimate the overall participation rates for $\mathbf{2 0 1 3 / 2 0 1 5}$ for each district

For modelling purposes, we presume that the school leaving age is raised to 17 in 2013 and to 18 in 2015, in line with government proposals. We interpret 'compulsory schooling' to mean a participation rate of 98% rather than 100%, on the grounds that even if compulsory, there will be a minority who will not participate. Evidence from DCFS (Statistical Release: Pupil Absence - Autumn 2008 Term Report (Provisional), 6 May 2008) suggests that 0.7% of pupils in the South East may be regarded as persistent truants, this figure ranging from 0.4% in Buckinghamshire to 1.3% in Southampton. This figure applies across the secondary sector and it is therefore likely that the figure is higher towards the end of compulsory schooling. We therefore feel justified in assuming a figure of around 2% once the age is raised to 17 and then 18.
(We also report the outcome of assuming a 100\% participation rate in all authorities as one alternative scenario, though we believe this is less realistic than our central projection.)

Not all authorities will be at precisely 98% however, so we allow authorities to vary around this figure in 2013/2015. We calculate the future overall participation rates as follows. We have the 2006 participation rates for district and unitary authorities from steps 1 and 2. We then assume that participation rates grow in line with the patterns identified earlier for 1998-2005, with lower participation authorities (in 2006) following a faster rate of growth. There is a convergence of participation rates from the bottom up. Hence we specify a narrowing of the range of participation rates over the period. For 2006 we have a mean participation rate of 86% and a range of 35% points (between 65% and 100%). For 20013, we set the mean to 98% and the range to 17% points (half its value in 2006) for 16 year olds. In schematic form we have the following mapping of participation rates:

The halving of the range is a matter of judgement, based on the observed diminution of the range between 1998 and 2005 and the need to be spread around a higher average of 98%. Again, this assumption can be adjusted within the spreadsheet to explore alternative scenarios.

The precise formula we use is

$$
p_{i}^{2013}=0.98+\left(p_{i}^{2006}-0.86\right) \times \frac{0.17}{0.34}
$$

- $p_{i}^{2006}-0.86$ gives the deviation of authority i from the SE average in 2006.
- This is then scaled by $0.17 / 0.35$, which is the shrinking of the range, to give a smaller deviation...
- ... around the 2013 mean of 0.98 .

Example: Aylesbury Vale, with a 2006 participation rate of 0.798 gets mapped onto:

$$
0.98+(0.798-0.86) \times \frac{0.17}{0.35}=0.942
$$

We apply this formula to each authority to determine its 2013 participation rate for 16 year olds. For 17 year olds we adopt the same methodology, except that we assume the 98% rate is achieved in 2015.

4. Estimate the overall participation rate for intervening years

In our original proposal we modelled the progression of participation rates over time as a logistic curve (an S-shape). Our implementation is actually slightly different, and simpler. One reason for this is that participation rates for most authorities are already fairly high (they are near the top of the S) and the logistic curve is fairly straight in this region. Therefore there is very little difference between a logistic curve and a straight line interpolation. The second reason is that our new method is easier to implement and adjust in a spreadsheet model.

The difference between the two methods is quite small in practice. Compared to the logistic method, our implementation has a slower increase in the early years after 2006 but speeding up later on. This might turn out to be a more accurate method if the main upward pressure on the participation rate comes from the change in legislation around 2013.

In our implementation therefore, the participation rate grows at a constant rate each year, between 2006 and 2103 (2015 for 17 year olds). The actual formula used is:

$$
p_{i}^{t+1}=p_{i}^{t} \times\left(1+g_{i}\right)
$$

Where g_{i} is the rate of growth for authority i each year, calculated as $g_{i}=\left(\frac{p_{i}^{2013}}{p_{i}^{2006}}\right)^{1 / 7}$.

Example:

Buckinghamshire's participation rate goes from 87% to 97.2%. The average rate of growth of the participation rate is therefore $\left(\frac{0.972}{0.87}\right)^{1 / 7}=1.016$, or by 1.6% each year over the seven year period. Hence the participation rate in 2007 is calculated as $0.87 \times 1.016=0.884$. For 2008 it becomes $0.886 \times 1.032=0.899$, and so on.

5. Project forward the component parts of the overall participation rate

We now need to project forward the component parts of the overall participation rate, in such a way as to be consistent with the overall rate. The simplest method would be to assume that each component retains its share of the total, however this is unlikely to be correct and we can do better than this.

We make a number of (we believe) reasonable assumptions about future trends in the components of participation. These can obviously be challenged and it is simple to examine the effects of alternative assumptions in the spreadsheet model. In particular, we assume:
a) The independent share of learners remains constant. The policy driver of an increase in the school leaving age is unlikely to affect the independent sector.
b) The work-based learning participation rate increases by 50%. We base this assumption on the government's response to the Leitch Report ${ }^{3}$ which sets a target of a doubling of apprenticeships by 2020. If the implied rate of growth is taken to 2013 it implies an increase of 50%.
c) We assume the part time participation rate remains constant. There is not much basis for any particular assumption, but it is in line with the data from 1998-2005 and it is unlikely to grow given the policy driver makes education compulsory and presumably full time for most.
d) The full time participation rate therefore becomes the residual component and accounts for most of the growth (apart from WBL) in overall participation.

6. Projections post 2013/2015

These years are simply set to be the same as for 2013 (for 16 year olds) or 2015 (for 17 year olds). It is possible that the participation rate will eventually climb above 98% and there might be continuing convergence, but the differences are likely to be small and any estimates rely on a substantial degree of speculation.

Commentary on the general quality of the data and caveats for our results
Undertaking this project we encountered difficulties with some aspects of the data and with combining it with our methodology, which suggest some limits to the

[^2]accuracy of the results. This is not unique to our chosen methodology, but applies generally as long as we have the current data.

We make our remarks under three headings:

- Missing data
- Accuracy and compatibility of the data
- Use of the data with our methodology

Missing data

In some places we would want to have more information, but it is simply unavailable. For example, we have no data on numbers in private education (by residence), or in work-based learning at the district level. We therefore have to make estimates, which may be inappropriate. For example, for work-based learning we assume that it is similar in distribution to the pattern of part time learning. This is an untested assumption. As a significant part of growth is expected to come from WBL, this uncertainty about the starting point is problematic.

Accuracy and compatibility
We make use of information from various sources and it is not always clear that they are compatible (e.g. whether they use the same definition of variables). We might illustrate this problem by noting that the DCSF's own participation figures are not without fault. The published rates for 2005 include a statement that says "Due to the margin of error surrounding local level participation estimates and the use of school level data for independent schools, participation rates can be over 100 per cent. For these areas, an asterisk is placed in the table." This is the case for both Wokingham and Reading and is especially surprising the published participation rates for 2004 are 83% and 90%, and for 2006 are 91% and 91%. Hence it is remarkable that a margin of error seems to lead to a change of over 10% points. These are unitary authorities with education departments, so the task of estimating such rates for districts which are not themselves education authorities should be much harder.

As explained earlier, we use PLASC and ILR data to disaggregate participation rates to district level. We believe that there is a risk here that these data sources exaggerate the variability of the participation rate within counties, but we have no other data to test this hypothesis against. The reason for our suspicion is that the variability suggested by the PLASC/ILR data implies some districts have participation rates greater than 100\% (this is because other districts have low rates, and we need them to average out at the known county rate). We found this applied particularly in Oxfordshire and may be due to the unusual nature of the education 'market' in that county, with the presence of the university and perhaps, private schools. Since participation rates cannot rise above 100% we have had to make ad hoc adjustments to our data to ensure our numbers are feasible. (We do this, for example, by assuming one district within a county has a similar participation pattern to another of similar size). We have only had to do this for Oxfordshire but the problem may also occur on a lesser scale in a few other districts.

The implication of this is that there are off-setting errors: if one district's rate is under-estimated, another's must be overestimated. Since, over time, these are converging towards compulsory participation in 2023/2015, this implies off-setting forecasts of growth in numbers: if it is under-estimated in one district, it is likely to be over-estimated in another within the county.

Use of the data with our methodology
Any methodology of forecasting, not just ours, has to be internally consistent when it comes to the forecast. The numbers for a district must add up to the total for the county, and that the sub-components must add up to the overall participation rate. This means that, inevitably, some items have to be treated as a residual, and calculated as such. This can result in large proportionate errors in this residual, particularly if it is a small item. This may not matter too much if the item is not of interest per se, such as the numbers in independent schools. However, the growth of this from the estimated value in 2006 will then influence the values of other variables and lead to uncertainty in the forecast.

Overall, we believe we have made the best use that we can of the data available. Our model's estimates are at least internally consistent. However, it would be useful if further research could shed light on some of the issues where data are missing or where there are puzzling anomalies between data series.

A comment on NET/NEET data

It would be useful to make use of NET/NEET data (Not in Education or Training/Not in Education, Employment or Training) in construction of the participation rates, or as a check. However there are some formidable problems of consistency between the various series. The figures are published by DCFS in the Statistical First Release Series but are not disaggregated to the local level. This can be done using data from the Connexions service, but this is not directly comparable to the SFR series due to differences of definition of the series and because Connexions is only aware of some, not all, persons within the NET category. The local breakdown is available for the NEET series, but to be compatible with our series we should use the NET series, which is the complement of our participation rate. Furthermore, the NEET rates are based on the numbers in schools and colleges in each district, not on the basis of residence, which is what is used in this report.

6. Results

The result of our modelling are contained in our spreadsheet model and there are many outputs which could be produced (e.g. for different age groups, or exploring different scenarios), so we will present a 'central' forecast here. Alternative outputs can be explored by the user of the spreadsheet model.

Table 7 below presents our estimates of learner numbers (16 and 17 year olds combined), by district and unitary authority, for the years 2006 and 2013. We break these figures down by school (full time), college (full time), independent school, part time (in colleges, not schools) and WBL. It is difficult to comment on particular details as there are so many different numbers; however, there are a couple of points worth noting:

1. The greatest reliance can be placed upon the figures for total learners. Once we break this down into its component parts we introduce another element of estimation and hence of uncertainty. Hence the work-based learning numbers increase proportionately more than the other categories because of the government's targets for increasing this category. The independent and part-time learner numbers decline in some districts, because we assume a constant participation rate for these, coupled with a declining population size. The school and college numbers then make up the residual numbers. Any errors in our assumptions (e.g. regarding WBL participation) will affect all the categories.
2. The growth figures should be read in the context of the travel to learn numbers that we derived earlier and also the earlier comments about housing. To incorporate these, Table 8 reports the authorities with the largest projected increases in learner numbers, along with the figure for net imports calculated earlier, plus the figure for projected new housing, where this was significantly higher than the population projection. Thus it is interesting to compare Milton Keynes and Elmbridge for example, at the top of the table. The projected increases in school plus college numbers are fairly similar, but Elmbridge also has a large net import of students, whilst Milton Keynes has a very slight net export of its resident students. The increased demand in Elmbridge could be met therefore by increased provision, or it could be met by increased provision in neighbouring boroughs, reducing the imports into Elmbridge, which would leave room in Elmbridge for its own increased numbers. (Note that the Net imports figure is a per annum figure, while the other numbers refer to increases over time. Hence care has to be taken in interpretation, one cannot simply compare these numbers.) Note also that our projection for Milton Keynes might be an underestimate if the figure for housing growth proves accurate.

Thus we see that judgement is needed when interpreting the figures and that, in particular, one cannot simply look at a district in isolation.

\qquad
 몿 す

丈山菖 茉 8 \＆N

 Participation rates for 2006 are based on DCFS data（for counties and unitary authorities）．Disaggregating to district level is done using Population figures for each district and year are obtained from the Office for National Statistics．
Learner numbers are calculated as number of 16／17 year olds in the local population \times participation rate

L9－	0ε	¢－	ャて－	29－	Ll－	0102	815	L	818	t601	6†	［40z	88	92	20	$9+15$	998	бu！${ }^{\text {¢ }}$
209	98	6 －	Ls－	ozs	82	t062	915	02	LLt	£єا乙	tur	8682	16	62	889	$\varepsilon เ 91$	98	Кәиәлем
t62	セ	¢－	£z－	821	89	1202	96	$\angle 9$	8 ¢¢	999	998	LZLL	K	19	${ }^{1} \mathrm{~L}$	L29	269	әбр！ирие \perp
8 －	«	0	0	02－	sl－	L20z	26	ts	088	068	999	6202	99	ts	088	016	029	чъеән Кәuns
Lz－	98	t－	てz－	と¢－	g	9861	z¢	82	＋88	8021	¢ 1	ع10z	16	28	90t	Otz1	881	әuхочㅍəds
$\angle L$	＜	1	9	06	8	9¢9	tor	29	262	992	907	8 StL	L	19	162	929	698	әрәшKuuny
£¢	99	$9-$	ャて－	tL	๕	1662	ZLz	SZ1	žs	«tレ	ts9	8982	991	181	9ts	80th	129	peәısueg pue әъеб！ə¢
${ }^{\text {Pefol }}$	78 M		$\begin{aligned} & \text { dopul } \\ & \text { coz ose } \end{aligned}$	วu｜	100405	${ }_{\text {lefol }}$	78 M	$\begin{aligned} & \text { oull? } \\ & \text { yed } \end{aligned}$	${ }_{\text {dopul }}$	ә6өा०О	${ }^{1004} 5$	$1 \mathrm{IP}, 10^{1}$	79 M	$\begin{aligned} & \text { oull? } \\ & \text { yed } \end{aligned}$	$\begin{aligned} & \text { dəpul } \\ & 900 z \end{aligned}$	ข6өाणО	100405	10．14s！
291	L	て－	Ll－	09	901	9202	＂	9	12t	t¢	816	6981	99	87		SLD	2t8	
ISt	๕	ε－	t－	Zして	202	0818	＋81	$\varepsilon レ$	L®9	LOZ	6 tH	$68 \angle 2$	เย1	914	199	$t 66$	Lt6	pıogp！！n

Table 8: Districts with the largest projected increases in learners

District	School	College	Increase 2006-2013						
			Total school plus college	Indep	Part time	WBL	Total	Net imports	\% growth of housing stock
Milton Keynes	460	280	740	-1	-4	145	879	-46	25\%
Medway	411	244	655	-15	-20	124	744	185	
Elmbridge	190	458	648	23	4	46	720	3124	
Aylesbury Vale	394	164	559	-5	-10	117	661	111	14\%
Waverley	28	520	548	-57	-9	25	507	256	
Thanet	281	210	491	3	3	121	618	-186	
Isle of Wight	266	191	457	3	2	146	606	-117	8\%
Horsham	141	310	452	15	6	62	534	-52	11\%
Canterbury	302	148	451	-18	-7	61	486	1943	
Dartford	235	180	416	2	3	59	479	2250	20\%
Guildford	202	212	415	-14	-3	53	451	1646	
New Forest	92	321	412	-3	-4	109	514	2062	
Mid Sussex	126	269	394	-5	-2	53	440	-891	12\%
Swale	251	138	389	-3	0	79	466	-801	
Ashford	245	139	385	23	10	89	507	-385	23\%
Arun	156	196	352	-1	0	73	424	-1714	
Winchester	3	346	349	-2	-7	112	451	1983	11\%
Shepway	205	141	346	-2	-1	51	394	-189	
Eastbourne	5	339	343	0	0	46	389	834	
Windsor and Maidenhead	238	102	340	-104	-15	33	255	228	
Sevenoaks	229	94	323	-16	-4	40	342	-1635	
Tonbridge and Malling	229	93	322	-14	-4	54	358	1398	9\%
Maidstone	226	95	321	-15	-5	63	364	514	
Hart	40	262	302	-1	-1	40	341	-1530	
Tandridge	168	128	296	-23	-4	24	294	-280	
Test Valley	1	293	294	-2	-5	75	363	-1352	9\%
East Hampshire	5	288	293	-6	-6	62	343	-567	
Wealden	160	128	288	-18	-3	37	303	-1335	
Tunbridge Wells	217	69	285	-17	-3	37	302	146	
Rother	41	236	276	4	1	48	330	-172	
Wokingham	181	92	273	-11	-6	82	337	-1327	8\%
West Oxfordshire	169	98	267	-20	-9	56	294	-65	8\%
Chichester	105	158	262	12	6	58	339	2151	8\%
Basingstoke and Deane	15	243	257	1	6	159	424	506	12\%
Lewes	33	210	243	-9	-5	40	268	787	
Crawley	140	99	239	0	-1	58	296	684	8\%
Hastings	61	170	231	-2	-2	52	279	-217	
Bracknell Forest	113	114	228	-65	-24	23	163	-576	11\%
West Berkshire	156	58	214	-64	-21	62	191	92	8\%
Dover	134	65	200	-18	-7	48	223	-498	

Because we should go beyond looking at a particular district in isolation, it may be helpful to look at a map of the projected increases in numbers, shown in Figure 19
below. This shows nine separate categories, with approximately equal numbers of districts in each. The darker colours represent larger increases in learner numbers.

Figure 19: Map of growth in total learner numbers
Growth in total learner numbers

Note that this map includes learners in the independent sector as well as those following a WBL route. Using this map we get an idea of where there are groups of neighbouring authorities with large increases in numbers, for example in North Kent and in the north of Buckinghamshire.

Figure 20 shows a similar map, but includes only full time learners (in both schools and colleges). This leaves out part time learners, WBL and students in the independent sector. This gives a similar pattern to the figure above (note that the colours represent different values in the two graphs), but again suggests the northern districts of Kent as areas of growth, as well as Milton Keynes and Aylesbury Vale together in the north of the region.

Figure 20: Map of growth of full time learners

Growth in full time learner numbers

From our model we can also measure the growth to the year 2015, by which time all 17 year olds should be in education or training. These numbers obviously reveal a little more growth, and are shown in Table 9 below. Note that the numbers of students in education or training in 2015 are fairly similar to the numbers in 2013 (on average about 1% higher) but that when measured as the growth from 2006, the 2015 figure is about 11% larger than the 2013 figure. (Example: Horsham's 2013 number is estimated to be 3358 and in 2015 to be 3410, an increase of 1.6%. The growth from 2006's figure of 2824 is 534 (to 2013) and 587 (to 2015), which is an increase of 9.8%.) There are wide variations around this average and this illustrates the difficulty of accurately measuring the rate of growth, rather than the level, of a variable.

OSt	t81	t	1	9 TZ	St	168ε	629	202	8ε	St6z	LLI	LTEE	StE	L61	$\llcorner\varepsilon$	00LZ	291	pue әуоłsбu！seg
602	ts	${ }^{-}$	L－	¢91	ε	เ8てZ	ELL	91	$\dagger \angle 1$	＋8L1	Lع	GLOZ	6LI	6L1	181	1291	\downarrow ャ	би！чдом
98t	89	9 －	\＆L－	OLZ	921	1¢ZE	261	8 L	t6z	L6L1	078	Sl8Z	เ\＆1	セ¢	L0¢	9ZS1	HLL	xessns P！W
989	02	s	カ	1上8	SSL	Oレセを	S61	0\＆	0 ¢	9881	698	†て8乙	GZ1	SZ1	9 9¢	tts	50L	meysıoh
897	69	9 －	L－	乙6	0¢	88\＆乙	961	$1 \varepsilon \downarrow$	67	£6L	6 6LL	OZıZ	L\＆	L\＆	9¢1	102	686	Кәјмедо
918	19	ε	9	8 tl	86	0\＆もて	†L	91	HL	09L1	692	カレLZ	ELL	\＆レL	SOZ	ع101	L29	
Lto	08	ε－	9 －	SOZ	t91	レレE\＆	OGZ	991	$8 \varepsilon 乙$	$\angle L t L$	08LL	0＜8Z	691	691	とヶて	ZLZし	9101	und \forall
tSt	61	6 －	Sl－	96	29	¢981	†8	99	001	t89	Ott	LLZL	¢9	99	SHL	889	$8\llcorner\varepsilon$	ınp \quad ¢
92t	\angle	て－	t－	921	612	L998	£Sレ	89	て¢も	L¢EL	t＜91	レセてE	SOL	02	9 tr	s911	Sctl	иәргеәм
0¢E	$\angle 9$	0	－	£દ乙	Ot	Et0z	691	GL	HVL	Glth	Etz	ELLL	ZLI	GL	－tr	Z8L1	EOZ	ләц10у
Z8Z	97	$9-$	tr－	1 IZ	$\dagger \varepsilon$	SLIZ	291	tL	$9+1$	8 tGL	OちZ	E681	LZし	18	091	97\＆1	GOZ	səмәา
Z6Z	z9	て－	L－	921	¢9	OSZZ	861	88	HL	ttel	6＜t	L961	981	06	Ltb	891L	91t	sбu！${ }^{\text {SeH }}$
209	19	乙	ε	0¢t	9	£ $<$ ¢乙	ZLI	92	$8+1$	1081	92	LZL1	HLI	tL	$9+1$	LLEL	OZ	әuınoqıseヨ
LSL	＜＜1	92^{-}	εL^{-}	86	62	ع08t	89t	Otz	$\varepsilon \angle 9$	$9 ¢ 97$	984	299t	$9+8$	998	$9+2$	8\＆GZ	LGL	әлоН я иоџцб！ия
8 8દ	26	OL－	して－	68	\downarrow ¢	L08E	818	627	GLD	1t6	\＆ャ8	6Lャ		$6 \varepsilon ะ$	26t	£¢8	6991	шецби！уом
tht	87	عl－	ع6－	2th	оєє	てLLE	821	815	દટ8	L6L	LS8	$6 ¢ \varepsilon \varepsilon$	0¢	$1 \varepsilon \downarrow$	916	¢S9	LZSL	реәчиәр！ew pue ıospu！M
$1+2$	ZL	„て－	ZL－	LL	261	$68 . \varepsilon$	682	¢61	699	$t+L$	S00z	6 tSE	912	912	$1 \varepsilon 9$	ZL9	Z181	
6レレー	$\angle \varepsilon$	$6 \varepsilon^{-}$	0	Zs－	99－	1097	961	¢8ا	0	626	でてし	OZLZ	6 Sl	てZZ	0	1801	80\＆1	46nols
tSて－	6ε	Or	58－	ZL－	L6－	8992	て＜Z	091	乙દะ	678	SILL	2162	ह8ا	002	$91 \downarrow$	106	てしてし	6u！peәy
6Zદ	99	OL－	$8{ }^{-}$	901	＋81	L«ย乙	ャてठ	291	tec	$\varepsilon 09$	Stol	8t0z	891	ZLI	298	967	198	әı！
161	62	$9 \chi^{-}$	Lt	εL	ZLI	8908	10¢		6¢t	£๕8	LLZL	L 42	G＜Z	Ltz	986	092	6SLL	
Lth	88	てع－	W	แ	67	L00E	998	¢Gz	LSE	StZL	＋6L	9982	L92	$\angle 82$	868	8915	StL	әג！¢spıojxO પłnos
6S2	09	6 －	08－	εL	991	てแZ	50Z	$9+1$	909	989	0¢\＆レ	ELSZ	tol	SG1	¢¢G	tis	S9LL	profe
018	82	g－	81－	OZL	\pm ¢	86ャを	8 t C	641	Z69	8ZLL	Z乌Zし	881ε	691	¢8ا	602	8001	8LIL	॥әмıәчว
LL6	591	L－	て－	80ε	LOS	$67 \angle 9$	乙¢¢	LOZ	69	1281	080ε	8LLt	L9E	DIC	19	E9S1	ZLEZ	səuкəу uot！！w
OLZ	1ε	9z－	L－	8 81	LEL	6ヶ82	ャ¢	¢91	LSt	ZSOL	\＆¢01	6 692	EOL	881	829	t66	906	将
દદz	$\angle 8$	い－	£て－	ts	9 Cl	てZ0t	†0¢	40	SLE	026	98てZ	68LE		LSL	$8 \varepsilon \varepsilon$	416	0912	әquoo ${ }_{M}$
SOZ	to	z－	て－	け	\＆Zし	6991	｜th	89	88	818	tS6	t9el	96	02	16	$\angle L Z$	1 18	syong yınos
†82	OG	乙	8	to	181	てぃたて	2th	69	tGZ	¢88	E6S1	8SIZ	26	89	9 tz	$1+8$	でけし	นฝəサ！！
¢¢8	Lth	6 －	g－	802	009	lott	096	$\varepsilon \measuredangle<$	てい	0901	9 tSz	S998	618	乙¢乙	911	乙¢8	9102	әા¢＾Kınqsəəイ૪
｜etol	78 M	$\begin{aligned} & \text { әull } \\ & \text { Hed } \\ & \text { GLOZ } \end{aligned}$	dәрu｜ OOZ әS	әБәㅔㅇ	\|004गS	$1 \mathrm{Et} \mathrm{l}_{0}$	$78 \mathrm{M}$	$\begin{aligned} & \text { әu!? } \\ & \text { Hed } \end{aligned}$	\square	әбə॥ం〕	IOOYJS	1eło	79M	$\begin{aligned} & \text { әu!? } \\ & \text { Hed } \end{aligned}$	$\begin{aligned} & \text { dəpu\| } \\ & 900 z \end{aligned}$	әбөㅔㅇ	1004J	10！ns！

0 o

46

＋6－	ع	9 －	\＆${ }^{-}$	L9－	12－	8861	LZl	02	698	6201	t¢	402	88	92	20	9 9tl	998	би！уоМкәәәлеәбририед
219	08	6 －	\＆9－	て29	๕	0108	Ľ	69	996		OZL	8682	16	62	829	\＆191	98	
て¢ ¢	62	t－	cz－	$8+1$	961	6902	001	4	$9+\varepsilon$	9 29	268	LZLL	L2	$\stackrel{19}{ }$	12ε	LZ9	269	
${ }_{\text {Pe，}}^{1}$	78 M		depu｜		1004 S	${ }_{\text {Pe，}}^{1} \mathrm{O} \mid$	78 M	$\begin{aligned} & \text { oullt } \\ & \text { yed } \end{aligned}$	${ }_{\text {dopul }}$	จ6өा०O	${ }^{1004} 5$	｜efor	79 M	$\begin{aligned} & \text { oulg } \\ & \text { Hed } \end{aligned}$	$\begin{gathered} \text { dapul } \\ 900 z \end{gathered}$	${ }^{\text {aбə｜｜O }}$	${ }^{1004}{ }^{\text {S }}$	［0］
$8 \varepsilon^{-}$	乙®	$\stackrel{-}{-}$	9	L®－	L2－	$1+02$	$\angle 6$	¢	¢／E	$\varepsilon<8$	$2+9$	6202	99	ts	088	016	029	чৃеәН Kәıuns
96	68	9 －	62－	＋	L^{-}	296	$9 ¢ 1$	4	«ع	961	181	عமО乙	$\angle 6$	28	907	OtZ1	881	әилочㅋәds

The figures in Table 9 are illustrated in Figure 21 below.
Figure 21: Growth in full time learner numbers to 2015
Growth in full time learner numbers

This yields a similar map to that of Figure 20 for the growth to 2013. Alternative scenarios

It is relatively easy to explore alternative scenarios using the model. We explore two in this report:
(a) Assuming work-based learner numbers double by 2013 (instead of increasing by 50\%)
(b) Assuming 100\% participation in some form of education or training by 2013/2015

The first of these increases the proportion of growth that is accounted for by WBL and may be a reasonable alternative to our central assumption, given that we must expect growth to come from students who have traditionally dropped out and are unlikely to want to follow more academic routes. However, it should be noted that this is a significantly larger increase than is implicit in government policy (which implies growth of about 50% by 2013). The impact of this alternative is to increase the numbers in WBL, obviously, and to decrease the numbers in school and college. The overall participation rate remains the same.

These results are illustrated in Table 10 and it is perhaps most useful in seeing how changing this assumption affects the various projections. For example, in Aylesbury Vale (the first district in the table), the WBL number increases by 127 (we are comparing
the figure of 244 with that of 117 in Table 7), resulting in fall in school growth from 394 to $305(-89)$ and college growth to be reduced from 164 to 127 (-37). The independent sector is unchanged, as we believe it is unlikely to be involved in the same client group as WBL. The part-time sector is also unchanged, again by assumption, though the borderline between part-time learning and WBL may be a fine one, so we could interpret this scenario as an increase in either WBL or part-time learning.

ちても	ع0¢	9	1	801	9	S988	Lt9	80Z	8ε	1082	891	LTEE	StE	L61	$\llcorner\varepsilon$	00LZ	291	pue әуоłsбu！seg
LEL	16	g－	8 －	\triangle	1	ZLZZ	HZ	Hu	$\dagger \angle 1$	6L91	¢ ε	GLOZ	6LI	6L1	181	1291	\downarrow ャ	би！чдом
Oth	201	て－	G－	乙モะ	601	¢¢Z®	ObZ	$1 \varepsilon \downarrow$	20¢	6SLL	£ 8	Sl8Z	tel	セ¢	L0¢	9ZS1	HLL	xəssns P！w
t\＆G	SIL	9	St	$\varepsilon \angle Z$	†てし	$89 \varepsilon \varepsilon$	ObC	$1 \varepsilon \downarrow$	LE	8181	888	†て8乙	GZ1	SZ1	9 9¢	tts	50L	meysıoh
962	SIL	－	0	GL	901	91ヶて	z̧z	$9 \varepsilon 1$	991	$9<L$	S601	OZıZ	L\＆	L\＆	9¢1	102	686	Кәјмедо
$6 \varepsilon \varepsilon$	801	9	Z	8て1	98	¢¢って	1 IZ	611	$\angle L Z$	OtLl	9 GL	カレLZ	ELL	\＆レL	SOZ	ع101	L29	
っても	ctl	0	レ－	LSL	SZ1	ャ6Z®	てเع	691	\＆ヶて	6でし	でい	0＜8Z	691	691	とヶて	ZLZし	9101	und \forall
8 tl	てt	9 －	てl－	GL	8	6981	LOL	89	عOL	$\varepsilon 99$	LZち	LIZL	¢9	99	SLI	889	828	ınp ${ }^{\text {d }}$
ع0¢	U	ε－	8L－	UH	8\＆1	tose	281	$\angle 9$		9LZし	\＆6S1	レセてE	SOL	02	9 tr	s911	Sctl	иәргеәм
0¢	ع6	1	\downarrow	261	†	£50z	902	92	$9+1$	6LEL	L®z	ELLL	ZLI	GL	－tr	Z8L1	EOZ	ләц10у
897	†8	g－	6－	LLL	＜	z912	902	92	OSL	86tl	乙દ乙	E681	LZし	18	091	97\＆1	GOZ	səмәา
$6 \angle Z$	SOL	て－	て－	$1 \varepsilon 1$	$\angle \square$	$9 ¢ Z 乙$	Otz	88	Sth	66 L	¢9t	L961	981	06	Ltb	891L	91t	sбu！${ }^{\text {SeH }}$
688	16	0	0	S62	\checkmark	0レLZ	ZOZ	tL	Stl	9991	ヶ乙	LZL1	HLI	tL	$9+1$	LLEL	$0 Z$	әuınoqıseョ
tol	6 tz	して－	6s－	$6 \mathrm{~L}^{-}$	9 －	96ムt	969	Stz	$\angle 89$	6LSZ	IGL	299t	$9+8$	998	$9+2$	8\＆GZ	LGL	әлоН я иоџцб！ия
く८є	991	9－	い－	＋9	921	918ε	588	เモz	98t	416	S6Ll	6Lャ		$6 \varepsilon ะ$	26t	£¢8	6991	шецби！уом
¢SZ	62	Sl－	tol－	88	902	ャレ9¢	OLZ	$91 /$	218	tol	て\＆＜l	$6 ¢ \varepsilon \varepsilon$	0¢	$1 \varepsilon \downarrow$	916	¢S9	LZSL	реәчиәр！еw pue iospu！M
161	Lt	して－	t9－	9ε	86	$07 \angle \varepsilon$	898	961	L99	602	H61	6 tSE	912	912	$1 \varepsilon 9$	ZL9	Z181	
ε	26	Lて－	0	¢z－	て¢－	£とんz	SGz	961	0	9001	9LZL	OZLZ	6 Sl	てZZ	0	1801	80\＆1	46nols
S8－	乙6	$\varepsilon \varepsilon^{-}$	69－	SL－	101－	LZLZ	SLZ	291	$\angle \downarrow \varepsilon$	978	HLIL	2162	ह8ا	002	$91+$	106	てしてし	6u！peәy
t6z	8L1	6－	02－	GL	O\＆L	てたとて	$9 \angle Z$	¢91	てた	129	066	8t0z	891	ZLI	298	967	198	әı！
SOZ	6SL	02－	¢ ε^{-}	Ot	19	280\＆	t88	LZZ	1St	008	OZZL	L 42	G＜Z	Ltz	986	092	6SLL	
\＆\＆	$\angle L$	¢z－	セع－	6	9	6662	tot	298	t98	LLLL	ISL	9982	L92	$\angle 82$	868	8915	StL	әג！¢spıojxO પłnos
SOZ	SOL	L－	Sz－	Ot	乙6	81LZ	6 t Z	Ltr	LIS	tGs	LGZ1	ELSZ	tol	SG1	¢¢G	tis	S9LL	profe
L81	621	L－	82－	to	67	GLEE	862	9／1	189	ZSOL	891L	881ε	691	¢8ا	602	8001	8LIL	॥әмıәчつ
628	26Z	t－	－	\downarrow ¢	698	L999	699	OLZ	09	L8LL	1t62	8LLt	L9E	DIC	19	E9S1	ZLEZ	səuКə＞＞1 uot！！
£91	69	七て－	99－	26	96	2082	191	＋91	89t	HOL	2001	6 692	EOL	881	8 89	t66	906	将
ELL	¢SL	い－	£て－	St	98	2968	ZLE	Ltb	StE	乙と6	9612	68LE		LSL	$8 \varepsilon \varepsilon$	416	0912	әquoo ${ }_{M}$
LLZ	乙8	0	1	$\varepsilon \varepsilon$	001	1891	82	02	16	OLE	1 16	t9el	96	02	16	$\angle L Z$	1 18	syong yınos
HLZ	乙8	1	ε	七乙	101	698z	\dagger ¢	69	$8 t 2$	¢9\％	\＆ISL	8SIZ	26	89	9 tz	$1+8$	でけし	นฝəサ！！
199	toz	OL－	¢－	LZし	SOE	9てZt	t99	CZZ	IUL	626	OS\＆Z	S9SE	618	乙\＆乙	915	Z98	9602	əા¢＾Kınqsə｜イ૪
｜etol	79M	$\begin{aligned} & \text { әul? } \\ & \text { Hed } \\ & \varepsilon L O Z- \end{aligned}$	dәрu｜ OOZ әS	әБәㅔㅇ	10040S	$1 \mathrm{Et} \mathrm{l}_{0}$	$78 \mathrm{M}$	$\begin{aligned} & \text { әu!? } \\ & \text { Hed } \end{aligned}$	\square	әбə॥ం〕	\|00पग्S	1eło	79M	$\begin{aligned} & \text { әu!? } \\ & \text { Hed } \end{aligned}$	$\begin{aligned} & \text { dəpu\| } \\ & 900 z \end{aligned}$	әбөㅔㅇ	1004J	10！ns！

 $\stackrel{\stackrel{0}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$認

L9－	＋9	g－	ャて－	8L－	92－	0102	ZS1	L	818	8901	$\stackrel{\text { L }}{\text { ¢ }}$	402	88	92	20%	9 9tl	998	
209	69	6 －	Ls－	887	9	t062	OSL	0	LLt	1012	ZLI	868	16	62	829	$\varepsilon เ$	98	кәиәлем
t62	zs	t－	$\varepsilon \tau-$	91	\＆\downarrow	1202	£ \downarrow	c	8 ¢	¢t9	098	LZLL	L	19	12ε	Lzs	469	әбр！ирие」
${ }_{\text {Pefo }}$	79 M		$\begin{gathered} \text { dəpul } \\ 300 z \text { əse } \end{gathered}$		1004 S	12×1	78 M	$\begin{aligned} & \text { oullal } \\ & \text { Hed } \end{aligned}$	$\begin{gathered} \text { dopul } \\ \text { ع10Z } \end{gathered}$	әбө\｜0	${ }^{1004}{ }^{\text {S }}$	${ }_{\text {lefo }}$	79 M	$\begin{aligned} & \text { oulg } \\ & \text { Hed } \end{aligned}$	$\begin{gathered} \text { depul } \\ 900 z \end{gathered}$	әбө\｜｜O	1004 S	［0！
8 －	$\varepsilon 9$	0	0	¢ ε^{-}	92－	L20Z	815	＋s	088	928	tog	6002	99	tG	088	016	029	पleer kaxins
くて－	ZL	－	てz－	＋9－	OL－	986	69	82	＋88		821	ع10z	$\angle 6$	28	904	OtZ	881	әиıочıәds

The second scenario, of 100% participation, represents the maximum possible out-turn. It is therefore interesting to explore this scenario, even if we think it is less likely than our central projection. These tables (for the changes to 2013 and to 2015) are contained in Appendix 4, Table A4.1 and A4.2. Because we are now adding an additional 2% points to the participation rate, we need to modify our assumption about the growth of WBL (otherwise, the extension from 98% to 100% participation is assumed all to occur in schools and colleges. Since these are the most marginal learners, this outcome seems unlikely and it is more reasonable to assume some increase in WBL.). We therefore assume a growth of 75% in WBL (rather than the 50% in our central scenario), although other figures could reasonably be used. This illustrates again the difficulty of estimating the individual components of the overall growth.

Looking at the growth numbers in this scenario, it now predicts around 24,100 additional learners in the South East, compared to an estimate of 19,880 in our central projection, a difference of 21.4%. Again, there are wide variations around the average: where the overall participation rate was equal or near to 100% already in Table 7, there will be little difference reported in Table A4.1. For some authorities (e.g. Medway) there is a big difference because in our central projection we had them falling short of our average figure of 98% participation.

7. Conclusions

Our work has provided a mass of contextual information regarding post-16 participation and has derived a methodology for making projections of learner numbers (with various degrees of disaggregation) up to the year 2020. We have identified possible reasons for adjustments to our basic specification and we have demonstrated how the results may be interpreted. In particular we noted that transfers across local authority borders mean it is important to take these into account when interpreting the results of the model. We have examined two different scenarios to illustrate how the model might be used.

In the light of this, it would be dangerous simply to take the predicted increase in learner numbers in a district as a guide to the need for additional provision. That decision would need to take account of other factors such as:

- the flows of students between districts in the vicinity
- the plans of neighbouring districts and colleges
- the split of students into the various components such as full-time or part-time learners

It is also important to continue monitoring changes as time goes on. For example, it may become apparent that the assumptions made in this model regarding the growth of WBL participation turn out to be wrong. In this case the forecasts should be revised in the light of new information.

There are areas where the model could possibly be improved and hence where further research might be worthwhile. We have already discussed some of the issues around the data at the end of section 5 above. We were unable to obtain much useful information about the independent sector and this is calculated as a residual in our model. The DCSF does provide participation rates for the independent sector at the country/unitary authority level and, depending upon the source of that data, it might be possible to obtain that at district level. There are also some inconsistencies, we believe, between the DCSF data and the PLASC/ILR data, which we have had to circumvent.

There is also some debate over population forecasts, as the ONS figures are projections based upon birth and death rates, coupled with estimates of migration. They do not take account of information contained in local plans such as new housing developments, which might prove to be more accurate. However, it might be difficult to integrate such figures into our model and maintain the consistency that is given by using the ONS figures.

8. Appendices

Appendix 1: References for literature review

Andrews, M.J. and Bradley, S. (1997). 'Modelling the transition from school and the demand for training in the UK', Economica, 64, 387-413.

Ashford, S., Gray, J., and Tranmer, M. (1993). 'The introduction of GCSE examinations and changes in post-16 participation', Youth Cohort Report No 23, Department for Education and Employment, Sheffield.

Becker, G. S. (1993), Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education. 3rd Edn (University of Chicago Press).

Cheng, Y. (1995). 'Staying on in full-time education after 16: do schools make a difference?' Youth Cohort Report No 37, Department for Education and Employment, Sheffield.

Clark, D. (2002). 'Participation in post-compulsory education in England: what explains the boom and bust?' Discussion Paper no. 24, Centre for the Economics of Education, London School of Economics.

Dearden, L., Emmerson, C., Frayne, C., and Meghir, C. (2006) 'Education subsidies and school drop-out rates'. Discussion Paper no. 53, Centre for the Economics of Education, London School of Economics.

Dearing, R. (1996). Review of qualifications for 16-19 year olds, Summary Report, (London, SCAA).

Foskett, N., and Hesketh, A. (1997). 'Constructing choice in contiguous and parallel markets: institutional and school leavers' responses to the new post-16 marketplace', Oxford Review of Education, 23, 299-319.

Gray, J., Jesson, D. and Tranmer, M. (1993). 'Boosting post-16 participation in full-time education', Youth Cohort Report No 20, Department for Education and Employment, Sheffield.

Gorard, S., and Smith, E. (2007). 'Do barriers get in the way? A review of the determinants of post-16 participation', Research in Post-Compulsory Education, 12, 141-158.

Halsey, A., Heath, A., and Ridge, S. M. (1980). Origins and Destinations. Oxford: Oxford University Press.

Leslie, D., and Drinkwater, S. (1991). 'Staying on in full-time education: reasons for higher participation rates among ethnic minority males and females', Economica, 66, 63-77.

McVicar, D. and Rice, P. (2001). 'Participation in further education in England and Wales: an analysis of post-war trends', Oxford Economic Papers, 53, 47-66.

Maguire, S., and Thompson, J. (2006). 'Paying for people to stay at school - does it work? Evidence from the evaluation of the piloting of the Education Maintenance Allowance (EMA)'. SKOPE research paper 16. University of Oxford.

Mangan, J., Adnett, N., and Davies P. (2001). 'Movers and stayers: determinants of post16 educational choice', Research in Post-Compulsory Education, 6, 31-50.

Micklewright, J. (1989). 'Choice at sixteen', Economica, 56, 25-40.
Micklewright J, Pearson M, and Smith S. (1988). 'Unemployment and Early School Leaving', Economic Journal, 100, Conference Papers (1990), 163-169.

Pissarides, C.A. (1981). 'Staying-on at school in England and Wales', Economica, 48, 345-63.

Rice, P. (1987). 'The demand for post-compulsory education in the U.K. and the effects of educational maintenance allowances', Economica, 54, 465-76.

Rice, P. (1999). 'The impact of local labour markets on investment in further education: Evidence from the England and Wales Youth Cohort Studies', Journal of Population Economics, 12, 287-312.

Thomas, W., and Webber, D. (2001) 'Because my friends are': the impact of peer groups on the intention to stay on at sixteen', Research in Post-Compulsory Education, 6, 339354.

Thomas, W., Webber, D., and Walton, F. (2003) 'School effects that shape students' intentions to stay-on in education', Research in Post-Compulsory Education, 8, 197211.

Whitfield, K., and Wilson, R.A. (1991). 'Staying-on in full-time education: the educational participation rate of 16 year-olds', Economica, 58, 391-404.

	 u！бu！！ooчэs Kıosןndmoэ рәчs！u！！очм słuәpnłs 	［E！！des uewnh	－ләриәб әпбеәן）әэиешıодәд э！шәреэе s，иo！！$n!!!$ su！ －（uo！̣eonpә Kıosןndmoo łsod ןeuo！！eoon pue 		$\begin{array}{r} (\text { (L66L) }) \\ \text { Кәןреля ₹ sмәлри甘 } \end{array}$
（S70）Wつヨ ఛ！	 ssejo ןe！vos u！səбueyo＇（91 puoKəq uo kełs of ృ๐ ґวәdse uo！̣dunsuoo Kxoıd of pesn）eł！deo ıəd 		łueכ！！！uß！s əq of punot ZL6L u！əбе 아 pesn Kwunp әəoN ¡孔ueэ！！！u6！su！punoł ‘ssejo ן！！oos ‘uo！̣eonpə of uınłə би！и！̣ед чłпоК и！чұмол6 sем әдәчł 	sәןем 8 pue｜бuヨ	（L66L） uOS！！M 8 р｜Ә！サ！ЧМ
t！סo। Kıeu！g	（uo！̣еэ！！unumos pue sцłew）səıoכs K！！！！qe pue（pow כәs 	ןet！de〕 uewnh	 pue sseן ןe！oos ：sбu！pu！f u！ew 91 of Gl mo»t əsoı əбе бu！＾еә ן00чэs uәчм ZL6l səpnjou！ Kq мо৷）əбе ןебәן шnu！u！u ұе ио！！eэnрә 6u！łəןdmos Łо Kł！！！qeqoıd uo pəsnэof ıəded	sәјем 8 pue・おuヨ	（686レ）ұЧб！мм｜әуગ！ผ
КбојорочłәW	elea	KıOə41	słןnsə」 ןeo！u！dmヨ／suo！sn｜ouoう	Kıunos	（ıеəК）（s）ı0૫łn ${ }^{\text {a }}$

Appendix 2：Summary table of findings of studies reported in the literature review

ఛ！ pue s！̣síeue ןอo！！s！！ełs	dnoub snoof moı słןnse» uo peseq әц！euuo！！senb 6uịs L66L u！sumol（snowKuoue） 	Клоәчд әэ！ฺчэ ләшnsuoう	（słuәлed Kq pəэuәn｜ıu！ pue słsov łodsueגł ‘ sbu！̣punouns de！！！ueł， pue цэљeәs＊（てレ леәК）91 łsod ןоочэs әmes ә૫ł u！Kełs słuәpnłs Кчм łe syool dəded s！̣ц	YO	（LOOZ）sə！мед
（พอヨへ）$\downarrow \forall \wedge$	（ $\mathrm{S} \perp$ 人 6u！̣әəиә uo！̣иodod pue э！шоиоэәо！эоs（ләриә6）sэ！ุธ！иәэелецэ ןепр！ィ！ри！ 	ןet！deう uewnh	てL6し u！әбе ‘suo！！！！puos ұәулеш anoqeן ןеэоן ：sби！！pu！！ 	sәјем 8 pueן6uヨ	
¢！боך Kıeu！g	＇sıossəયбәə se pəsn osןe әде＇$\forall \exists>$ 		＇ıәриәб kq osje 91 te łиәшu！ene ןеиo！feonpə pue ＇uo！̣ednээo／иo！̣eonpә ןеłиәлed＇（ןоочэs дәуеәм－дәдеш 91 ұе suo！！eo！！！enb pue әұел ұиәшКоןdməun）suo！！！puoэ ұәулеш ınoqe। uo！！eonpe u！uo！̣ed！o！pued uo pesnoof ıəded	sәןем 8 pue｜ßuヨ	（6661）әכ！̣
রбоᅵорочıəW	elea	KıOəप」	sł｜nsəı｜еכ！！！！duヨ／suo！sn｜puoう	Kıłunos	

				Y	
	łиәшкоןdшәии цıno人 до sannseam pue uo！̣ed！̣！̣ued 		 ＇（дочоэ Ки！иеәן ןочэs）sұи！едұяиоэ Kןddns pue（วұә ‘ssejo ןе！oos ‘suo！！eכ！！！！enb） 	pue｜бü	（z00z）צגฺᅵ
Słэәнә mopuey	－（91 lsod әłed！！！̣ued of К Кəəy！！un 	ןey！deo uewn	 snłłełs ग！шоиоэә－о！эos pue ‘еәле и！әл！！ Kıosjndmoo łsod u！ənu！̣uos Kełs of uo！s！oəp 	pue｜6uヨ	
КбоІороч丬әW	eqea	Kı0ə ${ }^{\text {¢ }}$	st｜nsed［eo！uld dmق／Suo！snjpuoo	Kılunos	

Appendix 3: Full versions of selected tables in the main text
Table A3.1: Authorities with the largest predicted increase in the 16 and 17 year old population, 2006-2013 (Full version of Table 1 in text)

Authority	2006	Growth	growth	
Ashford	2843	266	9%	
Chichester	2365	136	6%	
Elmbridge	3033	156	5%	
Horsham	3331	128	4%	
Basingstoke and Deane	3810	103	3%	
Isle of Wight	3494	92	3%	
Thanet	3461	86	2%	
Rother	2070	48	2%	
Dartford	2360	54	2%	
Runnymede	1656	33	2%	
Chiltern	2373	29	1%	
South Bucks	1618	11	1%	
Arun	3408	-5	0%	
Eastbourne	2296	-6	0%	
Surrey Heath	2079	-8	0%	
Crawley	2545	-13	-1%	
Swale	3605	-26	-1%	
Shepway	2577	-28	-1%	
Hart	2552	-32	-1%	
Hastings	2361	-39	-2%	
Mid Sussex	3464	-61	-2%	
Milton Keynes	6096	-110	-2%	
Wokingham	3978	-92	-2%	
Guildford	3493	-90	-3%	
New Forest	4196	-116	-3%	
Test Valley	3102	-108	-3%	
Mole Valley	2148	-82	-4%	
Cherwell	3587	-144	-4%	
Epsom and Ewell	1863	-77	-4%	
Wealden	3790	-157	-4%	
Worthing	2383	-100	-4%	
Aylesbury Vale	4867	-213	-4%	
Reigate and Banstead	3165	-141	-4%	
Oxford	2984	-140	-5%	
Maidstone	3718	-177	-5%	
West Oxfordshire	2628	-131	-5%	
East Hampshire	3235	-163	-5%	
Tonbridge and Malling	3362	-170	-5%	
Spelthorne	2115	-108	-5%	
Tunbridge Wells	-173	-6%		
Winchester	-195	-6%		

Lewes	2479	-145	-6% $\%$						
Authority	2006	Growth	growth	$	$	Woking	2155	-128	-6%
:---	:---:	---:	:---						
Tandridge	4030	-145	-6%						
Canterbury	2984	-258	-6%						
Sevenoaks	4322	-294	-7%						
Wycombe	3210	-236	-7%						
Eastleigh	7367	-554	-8%						
Medway	2330	-179	-8%						
Rushmoor	3078	-240	-8%						
Dover	5322	-419	-8%						
Brighton and Hove	3468	-276	-8%						
Vale of White Horse	3396	-292	-9%						
South Oxfordshire	2750	-250	-9%						
Gravesham	2917	-279	-10%						
Fareham	4349	-439	-10%						
West Berkshire	1683	-170	-10%						
Adur	2092	-216	-10%						
Gosport	3244	-347	-11%						
Havant	3853	-417	-11%						
Waverley	5035	-566	-11%						
Southampton	4360	-494	-11%						
Windsor and Maidenhead	3165	-369	-12%						
Slough	3408	-420	-12%						
Bracknell Forest	4726	-654	-14%						
Portsmouth	3328	-551	-17%						
Reading									

Table A3.2: Growth in housing stock and growth of population* (full version of Table 2 in main text).

Authority	$\begin{aligned} & \text { Housing } \\ & \text { Stock } \\ & 2004 \\ & \hline \end{aligned}$	Housing stock 2015	\% growth in housing stock	$\begin{gathered} \text { Population } \\ 2006 \\ (000) \\ \hline \end{gathered}$	$\begin{gathered} \text { Population } \\ 2015 \\ (000) \\ \hline \end{gathered}$	\% growth in population
Berkshire						
Bracknell Forest	44000	48851	11\%	3408	2952	-13\%
Reading	57000	61689	8\%	3328	2658	-20\%
Slough	45000	47115	5\%	3165	2601	-18\%
West Berkshire	58000	62725	8\%	4349	3857	-11\%
Windsor and						
Maidenhead	55000	57529	5\%	4360	3919	-10\%
Wokingham	58000	62707	8\%	3978	3807	-4\%

Buckinghamshire

Authority	Housing Stock 2004	Housing stock 2015	\% growth in housing stock	$\begin{gathered} \text { Population } \\ 2006 \\ (000) \\ \hline \end{gathered}$	$\begin{gathered} \text { Population } \\ 2015 \\ (000) \\ \hline \end{gathered}$	\% growth in population
Aylesbury Vale	67000	76540	14\%	4867	4674	-4\%
Chiltern	36000	37080	3\%	2373	2442	3\%
Milton Keynes	89000	110960	25\%	6096	5912	-3\%
South Bucks	25000	25810	3\%	1618	1577	-3\%
Wycombe	64000	66970	5\%	4322	4022	-7\%
East Sussex						
Brighton and						
Hove	115000	119950	4\%	5322	4803	-10\%
Eastbourne	43000	45160	5\%	2296	2340	2\%
Hastings	39000	40890	5\%	2361	2276	-4\%
Lewes	41000	42980	5\%	2479	2273	-8\%
Rother	39000	41520	6\%	2070	2066	0\%
Wealden	60000	63600	6\%	3790	3671	-3\%
Hampshire						
Basingstoke and						
Deane	64000	71425	12\%	3810	3891	2\%
East Hampshire	44000	46340	5\%	3235	3002	-7\%
Eastleigh	48000	51186	7\%	3210	2897	-10\%
Fareham	44000	45674	4\%	2917	2641	-9\%
Gosport	32000	33125	4\%	2092	1792	-14\%
Hart	34000	35800	5\%	2552	2544	0\%
Havant	49000	51835	6\%	3244	2812	-13\%
New Forest	74000	75863	3\%	4196	4008	-4\%
Portsmouth	81000	87615	8\%	4726	3989	-16\%
Rushmoor	35000	37790	8\%	2330	2075	-11\%
Southampton	94000	101335	8\%	5035	4304	-15\%
Test Valley	45000	49014	9\%	3102	2871	-7\%
Winchester	44000	48698	11\%	3420	3199	-6\%
Isle of Wight	60000	64680	8\%	3494	3550	2\%
Kent						
Ashford	44000	54215	23\%	2843	3089	9\%
Canterbury	59000	62240	5\%	4030	3765	-7\%
Dartford	36000	43065	20\%	2360	2307	-2\%
Dover	46000	48745	6\%	3078	2765	-10\%
Gravesham	39000	43185	11\%	2750	2508	-9\%

Maidstone	58000	61690	6\%	3718	3472	-7\%
Medway	102000	109335	7\%	7367	6606	-10\%
Sevenoaks	45000	46395	3\%	2984	2784	-7\%
Authority	$\begin{aligned} & \text { Housing } \\ & \text { Stock } \\ & 2004 \\ & \hline \end{aligned}$	Housing stock 2015	\% growth in housing stock	$\begin{aligned} & \text { Population } \\ & 2006 \\ & (000) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Population } \\ 2015 \\ (000) \\ \hline \end{gathered}$	\% growth in population
Shepway	43000	45295	5\%	2577	2525	-2\%
Swale	52000	55735	7\%	3605	3536	-2\%
Thanet	57000	59925	5\%	3461	3416	-1\%
Tonbridge and						
Malling	45000	48825	9\%	3362	3165	-6\%
Tunbridge Wells	43000	45250	5\%	3102	2798	-10\%
Oxfordshire						
Cherwell	56000	61310	9\%	3587	3498	-2\%
Oxford	54000	57150	6\%	2984	2817	-6\%
South						
Oxfordshire	52000	56590	9\%	3396	3032	-11\%
Vale of White						
Horse	47000	52175	11\%	3468	3104	-10\%
West Oxfordshire	40000	43015	8\%	2628	2478	-6\%
Surrey						
Elmbridge	52000	54079	4\%	3033	3290	8\%
Epsom and Ewell	28000	29629	6\%	1863	1819	-2\%
Guildford	53000	55898	5\%	3493	3400	-3\%
Mole Valley	34000	35539	5\%	2148	2061	-4\%
Reigate and						
Banstead	53000	56483	7\%	3165	3055	-3\%
Runnymede	33000	34314	4\%	1656	1624	-2\%
Spelthorne	39000	40359	3\%	2115	1967	-7\%
Surrey Heath	32000	33683	5\%	2079	2041	-2\%
Tandridge	32000	33008	3\%	2362	2200	-7\%
Waverley	47000	49070	4\%	3853	3394	-12\%
Woking	38000	40178	6\%	2155	1983	-8\%
West Sussex						
Adur	26000	27170	5\%	1683	1460	-13\%
Arun	65000	69185	6\%	3408	3335	-2\%
Chichester	47000	50870	8\%	2365	2430	3\%
Crawley	41000	44150	8\%	2545	2432	-4\%
Horsham	52000	57580	11\%	3331	3449	4\%
Mid Sussex	53000	59345	12\%	3464	3314	-4\%
Worthing	45000	46800	4\%	2383	2299	-4\%

* Note to table: The population growth figures are based on ONS projections.

Table A3.6a: Imports and exports of school pupils across LA boundaries (full version of Table 6 in the main text)

	Number of learners	Number who stay	Number exported	Number imported	Net imports	Number taught	\% of learners taught
Adur	378	281	97	15	-82	296	78
Arun	1010	851	159	43	-116	894	89
Ashford	1264	1052	212	106	-106	1158	92
Aylesbury Vale Basingstoke and	2024	1798	226	440	214	2238	111
Deane	154	0	154	0	-154	0	0
Bracknell Forest	926	625	301	165	-136	790	85
Brighton and Hove	780	770	10	97	87	867	111
Canterbury	1515	1345	170	390	220	1735	115
Cherwell	1011	745	266	35	-231	780	77
Chichester	654	584	70	229	159	813	124
Chiltern	1387	1228	159	667	508	1895	137
Crawley	999	990	9	106	97	1096	110
Dartford	738	601	137	740	603	1341	182
Dover	1274	1157	117	136	19	1293	101
East Hampshire	38	0	38	0	-38	0	0
Eastbourne	20	0	20	0	-20	0	0
Eastleigh	13	1	12	0	-12	1	8
Elmbridge	422	319	103	356	253	675	160
Epsom and Ewell	621	437	184	514	330	951	153
Fareham	105	0	105	0	-105	0	0
Gosport	248	248		73	73	321	129
Gravesham	1129	1018	111	254	143	1272	113
Guildford	895	812	83	340	257	1152	129
Hart	228	201	27	44	17	245	107
Hastings	405	396	9	28	19	424	105
Havant	144	96	48	79	31	175	122
Horsham	691	603	88	97	9	700	101
Isle of Wight	1310	1309	1	12	11	1321	101
Lewes	199	144	55	6	-49	150	75
Maidstone	1633	1399	234	553	319	1952	120
Medway	2887	2753	134	332	198	3085	107
Mid Sussex	716	671	45	173	128	844	118
Milton Keynes	2462	2257	205	94	-111	2351	95
Mole Valley	801	534	267	263	-4	797	100
New Forest	613	605	8	184	176	789	129
Oxford	1108	868	240	98	-142	966	87
Portsmouth	27	0	27	0	-27	0	0
Reading	1133	603	530	422	-108	1025	90
Reigate and							
Banstead	587	328	259	194	-65	522	89
Rother	194	0	194	0	-194	0	0
Runnymede	336	231	105	181	76	412	123
Rushmoor	113	0	113	0	-113	0	0
Sevenoaks	1190	219	971	86	-885	305	26
Shepway	914	760	154	51	-103	811	89
Slough	1306	1012	294	510	216	1522	117

South Bucks	814	323	491	352	-139	675	83
South Oxfordshire	1049	920	129	342	213	1262	120
Southampton	60	55	5	44	39	99	165
Spelthorne	183	132	51	79	28	211	115
	Number of learners	Number who stay	Number exported	Number imported	Net imports	Number taught	\% of learners taught
Surrey Heath	648	540	108	69	-39	609	94
Swale	1493	1316	177	196	19	1512	101
Tandridge	661	489	172	592	420	1081	164
Test Valley	8	1	7	0	-7	1	13
Thanet	1192	1107	85	81	-4	1188	100
Tonbridge and Malling	1435	739	696	917	221	1656	115
Tunbridge Wells	1450	973	477	935	458	1908	132
Vale of White Horse	1057	845	212	215	3	1060	100
Waverley	84	32	52	100	48	132	157
Wealden	1388	1100	288	249	-39	1349	97
West Berkshire	1710	1624	86	566	480	2190	128
West Oxfordshire	1018	988	30	304	274	1292	127
Winchester	18		18	0	-18	0	0
Windsor and							
Maidenhead	1474	1140	334	446	112	1586	108
Woking	344	165	179	43	-136	208	60
Wokingham	1860	1476	384	314	-70	1790	96
Worthing	33	0	33	0	-33	0	0
Wycombe	2145	1699	446	450	4	2149	100

Table A3.6b: Imports and exports of college pupils across LA boundaries (full version of Table 6 in the main text)

	Number of learners	Number who stay	Number exported	Number imported	Net imports	Number taught	learners taught
Adur	720	37	683	122	-561	159	22
Arun	1635	37	1,598	4	-1594	41	3
Ashford	983	483	500	213	-287	696	71
Aylesbury Vale	1298	771	527	433	-94	1204	93
Basingstoke and							
Deane	3131	2,623	508	1,133	625	3756	120
Bracknell Forest	1225	586	639	202	-437	788	64
Brighton and Hove	3145	2,533	612	1,360	748	3893	124
Canterbury	1056	923	133	1,824	1691	2747	260
Cherwell	1182	699	483	305	-178	1004	85
Chichester	1249	800	449	2,208	1759	3008	241
Chiltern	468	211	257	681	424	892	191
Crawley	1009	657	352	930	578	1587	157
Dartford	783	437	346	1,305	959	1742	222
Dover	887	235	652	132	-520	367	41
East Hampshire	2257	1,106	1,151	624	-527	1730	77
Eastbourne	1536	1,336	200	1,019	819	2355	153
Eastleigh	2565	1,509	1,056	1,828	772	3337	130
Elmbridge	1190	792	398	2,283	1885	3075	258
Epsom and Ewell	507	227	280	1,074	794	1301	257

Fareham	2181	626	1,555	720	-835	1346	62
Gosport	1274	643	631	351	-280	994	78
Gravesham	880	511	369	716	347	1227	139
Guildford	1219	550	669	1,932	1263	2482	204
Hart	1552	8	1,544	3	-1541	11	1
Hastings	1400	692	708	544	-164	1236	88
	Number of learners	Number who stay	Number exported	Number imported	Net imports	Number taught	\% of learners taught
Havant	2327	1,891	436	3,241	2805	5132	221
Horsham	1786	1,118	668	590	-78	1708	96
Isle of Wight	1253	1,083	170	26	-144	1109	89
Lewes	1505	844	661	1,454	793	2298	153
Maidstone	994	615	379	569	190	1184	119
Medway	2411	1,849	562	540	-22	2389	99
Mid Sussex	1786	622	1,164	149	-1015	771	43
Milton Keynes	2207	1,741	466	497	31	2238	101
Mole Valley	564	2	562	11	-551	13	2
New Forest	2540	1,910	630	1,579	949	3489	137
Oxford	697	571	126	1,003	877	1574	226
Portsmouth	3325	1,200	2,125	348	-1777	1548	47
Reading	1209	784	425	1,371	946	2155	178
Reigate and Banstead	1643	1,188	455	1,436	981	2624	160
Rother	1352	754	598	610	12	1364	101
Runnymede	785	207	578	812	234	1019	130
Rushmoor	1610	1,262	348	3,045	2697	4307	268
Sevenoaks	693	3	690	2	-688	5	1
Shepway	834	390	444	359	-85	749	90
Slough	1348	671	677	769	92	1440	107
South Bucks	410	1	409	1	-408	2	0
South Oxfordshire	2051	1,408	643	1,049	406	2457	120
Southampton	3784	2,632	1,152	1,034	-118	3666	97
Spelthorne	1366	290	1,076	179	-897	469	34
Surrey Heath	986	19	967	5	-962	24	2
Swale	1138	309	829	7	-822	316	28
Tandridge	647	2	645		-645	2	0
Test Valley	2272	390	1,882	349	-1533	739	33
Thanet	1353	989	364	176	-188	1165	86
Tonbridge and Malling	850	336	514	1,474	960	1810	213
Tunbridge Wells	649	89	560	204	-356	293	45
Vale of White Horse	1065	604	461	323	-138	927	87
Waverley	1700	907	793	979	186	1886	111
Wealden	1323	29	1,294	9	-1285	38	3
West Berkshire	966	485	481	99	-382	584	60
West Oxfordshire	853	410	443	131	-312	541	63
Winchester Windsor and	2313	1,488	825	2,514	1689	4002	173
Maidenhead	893	227	666	734	68	961	108
Woking	1259	420	839	193	-646	613	49
Wokingham	1278	17	1,261	12	-1249	29	2
Worthing	1841	1,275	566	844	278	2119	115
Wycombe	1209	247	962	125	-837	372	31

L9－	Lt	G－	ャて－	99－	Lて－	OLOZ	S\＆1	L	82ε	1801	St¢	«0Z	88	92	20%	9 ¢LI	99ε	бu！${ }^{\text {¢OM }}$
t¢8	て	6－	LG－	カ18	カ	เモટย	ع¢L	02	LLD	Lてぃて	0¢L	86EZ	16	62	889	$\varepsilon เ 91$	98	Кәрәлем
HLt	88	t^{-}	$\varepsilon \chi^{-}$	$\varepsilon \angle 1$	628	LせLZ	601	LG	$8+\varepsilon$	102	976	LZLL	LL	19	$1 L \varepsilon$	LZS	469	әбр！ирие」
8 －	Ot	0	0	Lて－	02－	1LOZ	SOL	ts	08ε	$\varepsilon 88$	$6+9$	6LOZ	¢9	ts	088	016	$0 \angle 9$	чъеән Кәגns
Lz－	๕	${ }^{-}$	乙て－	86^{-}	L－	S861	LS	82	t8E	Z6اL	081	ع10z	L6	28	$90 t$	$0 ヶ$ ¢	881	әuлочłəəds
981	87	\downarrow	9	98	St	Et91	615	z9	$\angle 62$	192	tot	8Sth	LL	19	162	$9<9$	698	әрәшKuuny
$\stackrel{\text { 라이 }}{ }$	78 M	$\begin{aligned} & \text { әul? } \\ & \text { Hed } \\ & \varepsilon เ 0 z^{-} \end{aligned}$	dəpu｜ OOZ әs	әБәㅔㅇ）	1004 S		$79 M$	$\begin{aligned} & \text { әس!l } \\ & \mu e_{d} \end{aligned}$	$\begin{aligned} & \text { dəpuI } \\ & \text { عLoz } \end{aligned}$	әбэ川ОО	1004 S	$\mid \stackrel{\text { etol }}{ }$	79M	$\begin{aligned} & \text { әس!l } \\ & \mu e_{d} \end{aligned}$	dəpu｜ 9002	әбə｜｜0つ	10040 S	โฺ！us！a
\＆\downarrow	98	9 －	\downarrow－	ts	\downarrow ¢	1662	Z Z Z	SZ1	てZG	9Stl	St9	8982	9S1	1¢1	9tS	ع0tl	129	peəısueg pue әұеб！əy
L91	乙¢	て－	L1－	99	66	9202	88	9	しても	0 ०	Lt6	6981	99	$8{ }^{\text {b }}$	8\＆t	GLt	てヤ8	Кәөе＾әою

 N

 \&

t6－	$\varepsilon ¢$	9 －	$\varepsilon \varepsilon^{-}$	£8－	92－	E861	LTL	02	69ε	t901	$6 \varepsilon \varepsilon$	LLOZ	88	92	20%	9tIL	998	
966	0 O	6－	ع9－	896	てS	ャ6¢ะ	しt	69	S97	1892	8\＆1	86とz	16	62	8て¢	عเ91	98	Кәрәлем
$\varepsilon \angle t$	st	t－	¢z－	L61	092	$00 z z$	LIL	$\angle \mathrm{C}$	$9+\varepsilon$	ちてL	LS6	LZLL	L	19	LLE	LzG	$\angle 69$	әбр！̣рие」
$8 \varepsilon^{-}$	8	－	G－	95^{-}	$\downarrow \varepsilon^{-}$	160Z	ELL	\＆	SLE	t98	989	6LOZ	S9	ts	08ε	016	$0<9$	чъеән Кәıuns
$97-$	29	9－	62－	＋9－	OL－	L961	6S1	L	Lع	9くい	821	Eloz	$\angle 6$	乙8	$90 t$	OちZL	881	әuлочłə
$\stackrel{12+101}{ }$	79 M	$\begin{aligned} & \text { әul? } \\ & \text { Hed } \\ & \text { sioz- } \end{aligned}$	dəpu｜ OZ əse	әбә｜ㅇ	10045	$\stackrel{\text { letol }}{ }$	78 M	$\begin{aligned} & \text { oullit } \\ & \text { Hed } \end{aligned}$	$\begin{aligned} & \text { dapuI } \\ & \text { LOZ } \end{aligned}$	ขбә｜ㅇ	100405	$\stackrel{\text { letol }}{ }$	79 M	$\begin{aligned} & \text { әW!7 } \\ & \mu e_{d} \end{aligned}$	dəpu\|	әбә｜｜О	10040 S	［ग！ 1 ¢S！
991	15	$\stackrel{ }{ }{ }^{-}$	9 －	62	Zt	\downarrow †91	ZZL	09	982	GSL	$10 t$	8Stl	LL	19	162	$9<9$	69ε	әрәuKuuny
L6L	901	G－	66^{-}	08	9ε	¢S0E	297	921	889	28\％1	LS9	8982	9 SL	เع1	9tS	cotl	IZ9	peəısueg pue әұеб！əу

Key to map:

Gosport
Fareham
Winchester
Havant
East Hampshire
Hart
Rushmoor
Basingstoke and Deane
Test Valley
Eastleigh
New Forest
Southampton
Portsmouth
Isle of Wight
Medway
Ashford
Canterbury
Dartford
Dover
Gravesham
Maidstone
Sevenoaks
Shepway
Swale
Thanet
Tonbridge and Malling
Tunbridge Wells

Report prepared for the Learning and Skills Council by Michael Barrow, Department of Economics, University of Sussex Researchers: Ray Bachan, Annelle Bellony, Alvaro Monge Zegarra, University of Sussex.

For more information, please contact:
Jan Jackson
Learning and Skills Council
Price House
53 Queens Road
Brighton
BN1 3XB
Jan.jackson@lsc.gov.uk

[^0]: ${ }^{1}$ Appendix 5 contains a map with an associated list of district and unitary authorities, to assist identification.

[^1]: ${ }^{2}$ See Clark (2002) for more detail.

[^2]: ${ }^{3}$ Prosperity for all in the global economy - world class skills (HM Treasury 2006).

